Shades of Disney:

Opaquing a 3D World

112,320 frames of animation. Each of
those frames needed to be drawn,
cleaned up, inked, painted, aligned
with the background, and finally shot
to film. Each of these steps required a
great deal of skill and patience on the
part of the artists involved.

Look at the job of the opaquer. This
person is responsible for receiving the
final cels from the ink department and
coloring them using opaque paint.
This job is essentially coloring in
between the lines using a paint-by-
numbers key known as a color model.
While it seems like a fairly straightfor-
ward, though repetitive, job; opaquing
was very time consuming during the
early years of animation. Shamus
Culhane, who was deeply involved in
the process at Disney for many years,
estimated that his opaquing depart-
ment could average about 25 cels per
day. At that rate, it

single artist can opaque several hun-
dred cels in a single day. As an extra
benefit, the computer eliminates many
of the problems artists had matching
colors painted on various layers of
acetate. Painting an animated feature
is still a major issue in animation, but
the job has gotten much easier.

Enter the Next Dimension

I n the digital world of 3D real-time
animation, I have some opaquing
problems of my own. Last month I
looked at methods for creating cartoon-
style rendering on 3D objects. I was
able to deal with creating the silhouette
and material lines, however I had yet to
get the cartoon look for the surface of
the object. I suggested that I would
need to look to texturing techniques to

ike many people who work with computer images, [ am a huge fan of clas-
sic animation. The amount of labor that goes into creating an animated
feature film has always amazed me. Consider for example Disney’s The

Jungle Book. The film is 78 minutes long. At 24 frames per second, that’s

get that part of the job done.

You can see the situation I would
like to end up with in Figure 1. Given
one light shining on the model, I want
there to be a clear separation of the
light and dark halves of the model. A
classic model for illumination gets me
most of the way. [ want the shade to be
a function of the surface normal and
the light position. In the Lambertian
reflection model, the brightness of a
surface position depends only on the
angle between the direction to the
light source, L, and the surface normal,
N. Mathematically, that would be

I=k/(N-L)

The dot product is taken between the
surface normal and the light source
direction and is multiplied by a diffuse
lighting constant. Since the dot prod-
uct will vary from O to 1, this would

would have taken
his team 12 years
to opaque the cels
for The Jungle Book.
Clearly, the staff
for this Disney
classic worked
their little animat-
ed tails off.
Fortunately for
the animation
industry, comput-
ers have come
along. Through the
use of a digital ink
and paint system, a

~

FIGURE 1. A nice cartoon shading showing a clear delin-
eation between light and dark portions of the model.

f B

FIGURE 2. Aplain Lambertian reflec-
tion gives a Gouraud-shaded look.

When not glued to his TV watching the Cartoon Network, Jeff can sometimes be found at Darwin 3D. Send him a message at
jeffl@darwin3d.com and we will slip it to him during a commercial break.

http://www.gdmag.com

MARCH 2000 GAME DEVELOPER




Q@

FIGURE 3. The spherical environment-mapping technique
can be used to make an object look as if it is reflecting light.

just give me the basic Gouraud-shaded-ball look where the
illumination value goes smoothly from white to black as you
can see in Figure 2.

What I need to create is a cutoff where the illumination is
“light” or “dark.” The ideal formula would be

1=(k(N+L)<¢)

where ¢ is the shading threshold. As I discussed last month, I
could compute the vertex colors at every vertex using this for-
mula. However, this wouldn’t get the desired results. Graphics
hardware interpolates the vertex color across each triangle.
Since the cutoff point could potentially occur in the middle of
a triangle, a simple interpolation would not look correct.

It’s tempting to consider using environment-mapping
techniques to create the effect. Spherical environment-map-
ping calculates the ray from your eye that reflects off the sur-
face to the point that it strikes on a hemisphere around the
object. You can see this illustrated in Figure 3.

This technique is used to make
things look reflective, like shiny
metal. It’s also a method for creating
a specular highlight on an object. I
could create an environment map
that transitions from light to dark, as
seen in Figure 4, then apply that to
the object. This gives me exactly the
result I was looking for but has a few
problems. For one, the coordinates
are calculated from the eye point. In
order to get the look I want, I will
need to calculate the environment
map from the light. This is possible,
but kind of a pain.

The second problem is that if I
wish to change the shading thresh-
old or the number of in-between
values, I would need to recalculate
the environment map completely.
That would be a bit of a burden on
the CPU.

GAME DEVELOPER MARCH 2000

FIGURE 4. A cartoon environment map, transi-
tioning from light to dark.

Using a Texture as a Lookup Table

nother thing you may have noticed is that the map in

Figure 4 is a bit wasteful. The same color gradient is
repeated around the circle radiating from the center. Let’s
look again at the formula I am trying to reproduce. I know
that the dot product term will vary from O to 1. I can calcu-
late the value for I for each dot product from 0 to 1 and
store it in a table.

I=(k,(N+L)<¢)
ZShadeTable[u] = (k,(u) <¢)

For example, suppose €= 0.375. The table would look like
Figure S.

Now I can take this table and convert it into a one-dimen-
sional texture (I know you’ve probably always wondered
how those could be used). I set up the 1D texture in OpenGL
with a couple of easy function calls that are almost identical
to their 2D equivalents.
glGenTextures(1,&m_ShadeTexture) ;
glBindTexture(GL_TEXTURE_1D, m_ShadeTexture);

// Do not allow bilinear filtering

glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
glTexImage1D(GL_TEXTURE_1D, 0, GL_RGB, m_ShadeWidth, 0,

GL_RGB , GL_FLOAT, (float *)m_ShadeSrc);

You will notice that I turned off filtering. This is because I
actually want to get a banded, shaded look. If filtering were
on, the colors would be blended in a way that would not
look at all right for my purposes. Since filtering can slow
things down on some cards, this ends up being beneficial for
performance as well.

In order to use this new 1D texture, I simply need to cal-
culate the dot product and index that result into the table
as a texture-map coordinate. For an object that can rotate,
the vertex normal will need to be rotated by the object
matrix before the dot product is calculated. The code for

0.0

FIGURE 5. Alookup table for
the given value.

http://www.gdmag.com



calculating the table index is given in Listing 1.
This new lookup map is applied just like a nor-

mal texture map except for the fact that it is 1D

and requires only one texture coordinate. The

LISTING 1. Code for calculating the texture coordinates.

T
// Function: CalculateShadow

results of this process can be modulated with the
object’s surface color to get the final image. This
gives me a great deal of flexibility in how the
shadow is applied across the image. I can control
the cutoff level and the number of levels of shad-
ing across the surface, and I can even add a high- ¢
light by brightening the top of the table. To recal-
culate the values, I only need to update the table
— quite a bit easier than the entire 2D texture
map. The table can be of any resolution your
graphics card can handle. If you use too few
shades, the resulting surface will appear very
banded and blocky. I found that for most objects,
a 32-pixel table looks pretty good. You can see a
variety of shade tables and their respective results
in Figure 6.

I now have a fast and flexible real-time cartoon  y
renderer. The whole concept of using the texture-
mapping capabilities of 3D graphics hardware to
apply arbitrary functions across a surface is very powerful.
You can create a very complex and completely nonlinear
shade table and then apply it to the surface and let the hard-
ware interpolate it.

// Purpose:

// Returns:

Other Methods

bviously I'm not the only person exploring the use of

non-photorealistic techniques for real-time rendering
in games. Sim Dietrich of Nvidia has been exploring the use
of hardware-accelerated transformation and lighting for
non-photorealistic rendering. Methods such as my use of the
normal and dot product require the CPU to perform calcula-
tions on each vertex. Sim'’s goal is to minimize the use of the
CPU by using features found on Nvidia’s GeForce 256 GPU.

The GeForce 256 supports cubic environment mapping

and texture-coordinate generation. By using a cubic environ-
ment map and the D3DTOP_DOTPRODUCT3 operation to generate
texture coordinates for the environment map, Dietrich can
create a cartoon rendering with very limited CPU impact. In
addition, by applying more rendering passes, he is able to
add some texture to the shaded part of the image. You can
see some examples of Sim'’s work in Figure 7.

CCC

| EEEEE | EEEN EEEEE

FIGURE 6. Some shade tables and results.

http://www.gdmag.com

// Arguments: The vertex normal, Light vector, and Object rotation matrix

MDD
float COGLView::CalculateShadou(tVector *normal,tVector *light, tMatrix *mat)

/111 Local Variables /////11111111111111111111111111111111111111111111111111111
tVector post;
float dot;
ML
// Rotate the normal by the current object matrix
MultVectorByRotMatrix(mat, normal, &post);
dot = DotProduct(&post,light); // Calculate the Dot Product

if (dot < 0) dot = 0;
return fabs(dot);

Calculate the shadow coordinate value for a normal

An index coordinate into the shade table

// Make sure the Back half dark
// Return the shadow value

On hardware that supports texture-coordinate generation
and features such as cubic environment mapping, these
methods are definitely worth exploring.

Intel Goes to Toontown

I ntel has been creating a variety of impressive technolo-
gies available to the game development community. They
have been working on a licensable real-time non-photoreal-
istic rendering algorithm as part of the Intel 3D Software
Toolkit that they are announcing at this year’s Game
Developers Conference. The software allows you to specify
line settings such as thickness, color, and type. For the shad-
ing, you can set the shadow cutoff level and brightness as
well as a highlight level and value. Intel has also been work-

FIGURE 7. This Nvidia cartoon rendering optimizes the
GeForce 256 architecture, minimizing CPU impact.

MARCH 2000 GAME DEVELOPER




ing on creating a variety
of rendering styles such
sketch and pen-and-ink
to go along with the car-
toon rendering.

The 3D Toolkit will
integrate this renderer
with other 3D technolo-
gy such as the multi-reso-
lution mesh, subdivision
surfaces, and a skeletal
deformation system. The
package will be available

for use in a variety of
real-time projects.

A Word About Digital
Cinematography

f course, even after

all this work, creat-
ing the rendered look for
your characters is only
part of the battle. You
also need to know how
to display them effec-
tively. In many real-time
3D games, the camera is
tied directly to the character. It bobs
along behind the character bumping
off walls (or going through them in
some cases) and wedges itself in a place
guaranteed to block the thing you are
trying hardest to see. Camera control
has become a major part of the 3D
game creation process. Poor camera
operation and control is sometimes
enough to cause a game to receive a
poor rating in game magazines. Clearly
it’s time to start thinking about the
camera as an integral actor in the
scene. Perhaps games have matured to
the point that it’s time to look to film
production techniques and assign cine-
matographers to camera control in 3D
interactive games.

Not long ago, most cinematics in
games were created using traditional
filmmaking and animation methods.
These movies could break the immer-
sive experience by pulling the player
out of the action. These days, however,
it seems like more developers are creat-
ing their cinematic sequences using the
game’s real-time engine. This trend has
brought a variety of new problems with
it. Many of these games use pre-scripted
sequences for camera control to display
the action in a pleasing way. This is fine
for noninteractive sequences or dia-

GAME DEVELOPER MARCH 2000

The Intel 3D Software Toolkit integrates a number of 3D technologies.

logue trees. But if we want to have truly
interactive sequences that the players
can enjoy the way the project director
intended, we need to take a serious look
at the art of real-time camera control.

Consider the example of the action/
adventure game. Many of these games
use a tethered camera under complete
user control. Game designers must be
content letting the player manipulate
the camera in order to show the action.
Anyone who has played a game like
this knows it can be very difficult to
manipulate the character and the cam-
era at the same time. Many times the
player will get the camera into a “good
enough” position and continue with
the action, but this position will proba-
bly not be the best one for displaying
the action.

One alternative approach I have
seen is never to give players control of
the camera in the first place. This can
be frustrating to players as they may
have a different idea of what is impor-
tant in an interactive situation. There
are then the hybrid methods which
yank control away from players to
show them something “dramatic.”
This can be jarring and totally pulls
players out of the interactive experi-
ence, leaving them no longer in con-

trol. It is clear to me that
the interactive medium
requires some fresh think-
ing about storytelling.

Filmmakers have been
telling stories with the
visual medium for a long
time now. They have cer-
tainly learned a few things
along the way. Out of
those experiences a certain
visual style has formed
that guides basic filmmak-
ing. I am not saying that
these rules are not or
should not be broken.
However, when they are
broken it is to achieve a
desired effect, not simply
out of ignorance of their
very existence. This cine-
matic style, sometimes
called continuity style,
describes shot framing and
staging methods that
enhance storytelling with-
out confusing audiences.

Next month, I'll be look-
ing at methods for shoot-
ing an interactive story. Till then,
think about the best and worst camera
control you have seen in a game and
let me know about it. =

FOR FURTHER INFO©

Traditional Animation

Culhane, Shamus. Animation from
Script to Screen. New York: St.
Martin’s Press, 1988.

This book is an excellent source for all

aspects of traditional animation — a

must-have for animators and pretty use-

ful for technical types. Covers everything

from the walk cycle to facial expressions

to starting your own studio. The only

book | know that describes how a dodo

bird walks.

Nvidia

http://www.nvidia.com

Sim Dietrich should have posted his doc-

ument and application for cartoon ren-

dering by now. If not, drop Nvidia’s

developer support an e-mail.

Intel 3D Software Toolkit
http://www.intel.com

Watch for a major announcement at the
Game Developers Conference, March
8-12, 2000.

http://www.gdmag.com



