
Real-Time Nonphotorealistic Rendering

Lee Markosian Michael A. Kowalski Samuel J. Trychin Lubomir D. Bourdev
Daniel Goldstein John F. Hughes

Brown University site of the
NSF Science and Technology Center for

Computer Graphics and Scientific Visualization
Providence, RI 02912

Abstract

Nonphotorealistic rendering (NPR) can help makecomprehensible
but simple pictures of complicated objects by employing an econ-
omy of line. But current nonphotorealistic rendering is primarily
a batch process. This paper presents a real-time nonphotorealistic
renderer that deliberately trades accuracy and detail for speed. Our
renderer uses a method for determining visible lines and surfaces
which is a modification of Appel’s hidden-line algorithm, with im-
provements which are based on the topology of singular maps of
a surface into the plane. The method we describe for determining
visibility has the potential to be used in any NPR system that re-
quires a description of visible lines or surfaces in the scene. The
major contribution of this paper is thus to describe a tool which can
significantly improve the performance of these systems. We demon-
strate the system with several nonphotorealistic rendering styles, all
of which operate on complex models at interactive frame rates.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms;

Additional Key Words: non-photorealistic rendering

1 Introduction

Computer graphics is concerned with the production of images in
order to convey visual information. Historically, research in com-
puter graphics has focused primarily on the problem of producing
images which are indistinguishable from photographs. But graphic
designers have long understood that photographs are not always the
best choice for presenting visual information. A simplified diagram
is often preferred when an image is required to delineate and ex-
plain. Lansdown and Schofield [10] make this point in the context
of a repair manual, asking, “How much use is a photograph to me-
chanics when they already have the real thing in front of them?”
Strothotte et al. [17] note that architects often trace over computer
renderings of their initial designs to create a sketchier look, because
they want to avoid giving their clients a false impression of com-
pleteness. In general, the question of whether to use photorealistic
imagery depends on thevisual effect intended by the designer.

A growing body of research in computer graphics has recognized

the power and usefulness of nonphotorealistic imagery [21, 20, 13,
22, 10, 17, 11, 7, 16, 3]. Until now, though, nonphotorealistic ren-
dering (NPR) methods have primarily been batch-oriented rather
than interactive. (An exception is Zeleznik’s SKETCH system [22],
which makes crude nonphotorealistic renderings using tricks in the
standard polygon-rendering pipeline). One obstacle to achieving
real-time nonphotorealistic rendering is the problem of determin-
ing visibility, since a straightforward use ofz-buffering may give
incorrect results. This can occur when what is drawn on the screen
does not correspondliterally to the geometry of the scene. For ex-
ample, a line segment between two vertices of a triangle mesh may
be rendered in a wobbly, hand-drawn style. Any part of the wobbly
line which does not directly correspond to the original line segment
may be clipped out duringz-buffering.

This paper presents a new real-time NPR technique based on an
economy of line– the idea that a great deal of information can be
effectively conveyed by very few strokes. Certain key features of
images can convey a great deal of information; our algorithm pref-
erentially renders silhouettes, certain user-chosen key features (e.g.,
creases), and some minimal shading of surface regions. To accom-
plish this at interactive rates, we rely on approximate data: not ev-
ery silhouette is rendered in every frame, although large silhouettes
are rendered with high probability. The key ideas that support this
scheme are

� rapid (probabilistic) identification of silhouette edges,

� using interframe coherence of silhouette edges, and

� fast visibility determination using improvements and simplifica-
tions in Appel’s hidden-line algorithm [1].

We demonstrate the use of these techniques to support a variety
of rendering styles, all of which are produced at interactive rates.
These include a spare line-rendering style suitable for illustrations
(including optional rendering of hidden lines), a variety of sketchy
hand-drawn styles suitable for approximate models, and a technique
for adding shading strokes to basic visible-line renderings in order
to better convey 3D information while preserving an artistic effect.
This last technique uses a method for determining hidden surfaces
which is a simple extension of the hidden-line algorithm. Using the
methods we describe, our renderer is able to produce basic visible
line drawings of free-form (tesselated) surfaces at an effective rate
of over 1 million model polygons per second on a modern worksta-
tion.

The overall structure of our algorithm is: (i) determine the silhouette
curves in the model, (ii) determine the visibility of silhouette and
other feature edges by a modified Appel’s algorithm, (iii) render the
silhouette and feature edges. The basic algorithm can be extended
to perform some shading over surface regions, in which case step
(ii) is extended to determine visibility of surfaces. We explain the
first two parts in detail, and then describe the final part in Section 5.

Copyright Notice
Copyright ©1997 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to distribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.

Supplemental Materials
Supplemental materials for this paper are available in the papers/markosia directory.



2 Assumptions and Definitions

First, we assume the model to be rendered is represented by a non-
self-intersecting polygon mesh, no edge of which has more than
two adjacent faces – i.e., the mesh is a topological manifold. To
make our second assumption precise, we need some definitions:

Definition 1 A polygon isfront-facing if the dot product of its out-
ward normal and a vector from a point on the polygon to the cam-
era position is positive. Otherwise the polygon isback-facing. A
silhouette edgeis an edge adjacent to one front-facing and one
back-facing polygon. Aborder edgeis an edge adjacent to just one
face. A silhouette edge isfront-facing if its adjacent face nearest
the camera is front-facing. Other silhouette edges areback-facing.

Our second assumption is that in every image that we render, the
view is genericin the following sense:

Definition 2 A view isgenericif (i) the multiplicity of the image of
the silhouette curves is everywhere one, except at a finite number of
points where it is two; (ii) these multiplicity-two points do not coin-
cide with the projection of any vertices of the mesh; and (iii) their
number is invariant under small changes in viewing direction.1

Our method may fail for non-generic views, but we have not ob-
served this in practice when computations are performed with
double-precison (64 bit) floating point numbers.

3 Appel’s Algorithm

Appel’s hidden-line algorithm, as well as those of Galimberti [6]
and Loutrel [12], is based on a notion ofquantitative invisibility
(QI), which counts the number of front-facing polygons between
a point of an object and the camera. The algorithm is applied to
the entire mesh of edges in a polyhedral model to determine QI
at all points; those with QI = 0 are visible and are drawn. Good
descriptions of the basic algorithm can be found in [5, 2, 18]. We
summarize a few key ideas here.

The algorithm first identifies all silhouette edges, because as we
traverse the interior of an edge, QI changes only when the edge
crosses behind a silhouette. In a generic view, QI can also change
at a vertex, but only when the vertex lies on a silhouette edge. This
fact is characterized by several authors [18, 5] as a “complication”
of the algorithm; we’ll discuss this further below.

The algorithm proceeds by determining (via raytracing, for exam-
ple), the QI of some point in each connected set of edges, and then
propagating QI out from this point, taking care to note changes as
the edge along which it is propagated passes behind silhouettes, or
when a vertex through which it is propagated lies on a silhouette. In
this way the number of ray tests is minimized by exploiting “edge
coherence.”

4 Improving Appel’s algorithm

4.1 A fast randomized algorithm for finding silhouettes

Since we focus primarily on rendering silhouettes, and because of
their prominence in Appel’s algorithm, it’s important to find them
quickly. But the straightforward approach to finding silhouettes re-
quires an exhaustive search, which conflicts with our goal of achiev-
ing interactive frame rates while rendering complex models.

1This definition is adopted from [19].

We therefore compromise, and have developed a randomized algo-
rithm for rapidly detecting silhouette edges. We examine a small
fraction of the edges in the model, and if we find a silhouette edge,
it is easy (by stepping along adjacent silhouette edges) to trace out
the entire silhouette curve. If a typical silhouette has 100 edges, we
are likely to detect it if we examine only 1% of the edges in the
object. Thus the likelihood that a silhouette will be detected is pro-
portional to its length, so that long ones, which are more significant,
are more likely to be detected.2

If we order the edges by dihedral angle�, and assign probabilities
that decrease as� increases, we can increase our chances of find-
ing silhouette edges, because given a randomly chosen view, the
probability that an edge is a silhouette is proportional to� � � (in
radians).

Given sufficiently small changes in camera position and orientation,
it’s often the case that a silhouette curve in one frame contains edges
that were also silhoutte edges in the previous frame. We exploit this
frame-to-frame coherence of silhouettes by always checking every
silhouette edge of the previous frame. To further increase the chance
of finding silhouettes in the current frame, we select a small fraction
of silhouette edges from the previous frame as the starting point for
a limited search, traversing edges toward or away from the camera
depending on whether the start point lies within a back-facing or
front-facing region of surface, respectively. The search stops when
a silhoutte edge is found or when the number of edges traversed
exceeds a pre-set bound.

When we remove the “seed-and-seek” approach to silhouette-
finding and instead check every edge of the model, we observe up
to a five-fold increase in total running time for finely-tessellated
models (see Section 6).

4.2 Silhouettes and cusps

The “complication” in Appel’s algorithm arises because the map-
ping from the surface to the plane is singular along silhouette edges.
Understanding this complicated case better allows us to avoid some
unneeded computation. To this end, we first (following [4]) redefine
QI to be the number of layers of surface (front- and back-facing) ob-
scuring a point. We then observe that, for generic views, QI along
a silhouette curve can change at a vertex only if that vertex is of a
special type, which we call acusp:

Definition 3 A vertex is called acusp vertex(or cusp) if one of
the following holds (see figure 1):

1. it is adjacent to exactly 2 silhouette edges, one front-facing and
the other back-facing,

2. it is adjacent to more than 2 silhouette edges, or

3. it is adjacent to a border edge3.

The QI along a non-silhouette curve which intersects a silhouette
curve at a vertex can change as it passes through the vertex. Appel’s
algorithm thus requires a local test at every vertex belonging to a
silhouette. But we are interested primarily in propagating QIalong

2Suppose an object’s tessellation is refined using a scheme with the fol-
lowing properties: with each subsequent refinement, the total number of
edges quadruples, the number of distinct silhouette curves (connected sets
of silhouette edges) remains constant, and the number of edges in each sil-
houette curve doubles. Then it is not hard to show that a constant probability
of detecting a silhouette is maintained while checkingO(

p
n) edges, where

n is the number of edges in a given refinement of the object.
3This case is necessary, as shown by figure 1(c), which contradicts corol-

lary 5.1.5 of [4].



(a) (b) (c)

Figure 1 Arrows indicate cusps. (a) A typical cusp. (b) A more
exotic cusp. (c) A border cusp (the two edges meeting at the center
of the sheet are border edges).

silhouette curves, so testing for changes in QI just at cusp vertices
provides a significant savings in computation time.4

4.3 Avoiding ray tests

Next, we show how to avoid some of the ray tests required by Ap-
pel’s algorithm. First, if we assume that all objects in the scene are
completely in view of the camera, then any edge which touches the
2D bounding box (in image space) of all silhouettes does not re-
quire a ray test – it is automatically visible. Hence, no ray test is
required for any connected set (orcluster) of silhouette edges con-
taining such an edge.

Appel’s algorithm would now proceed with (1) a ray test to estab-
lish QI at some distinguished point on each cluster, followed by (2)
the propagation step in which QI is assigned to the remaining points
of each cluster. By reversing this order, we can sometimes eliminate
the need for a ray test altogether, since the second step is often suf-
ficient to determine that an entire silhouette curve is occluded. (See
figure 2).

−1

a
a
a(a) (b)

+1

(c)

+1−1

Figure 2 (a) A surface: side view. (b) Smaller branch is in rear. (c)
Smaller branch is in front. The change in QI at cusps is indicated.
Traversing the inner silhouette in (b) is sufficient to determine that
the silhouette is totally occluded.

For each connected cluster of silhouette edges, we first choose an
edge and a point on it infinitesimally close to one of its vertices.
We call this point thebase pointof the cluster. Letb denote QI at
the base point. QI at all other points of the cluster will be defined
via offsets fromb. We assign a preliminary lower-bound value of 0
to b. We then calculate the offsets with a graph search, taking into
account image space intersections of edges of the current cluster
with any silhouette edges, as well as cusp vertices encountered in
the traversal. (A curve’s QI increases by two when it passes behind
a silhouette, and may change by an arbitrary, locally measurable
amount at a cusp vertex). We record the minimum QI,m, encoun-
tered during the search. Ifm < 0, we may safely incrementb by
�m. It’s easy to show that on a closed surface, front-facing silhou-
ette edges must have even QI and back-facing silhouette edges must

4Note that front-facing and back-facing silhouette edges (used in iden-
tifying cusps) can be detected according to whether the surface along the
edge is convexor concave; the convexity of each edge can be determined in
a pre-process step once-and-for-all.

have odd QI. For such surfaces, we add 1 tob if needed to correct its
parity. (In that case the cluster is totally occluded – figure 2 shows
an example of this).

Finally, we examine each intersection involving edges from differ-
ent clusters. In this situation, ifn is the QI of the occluding edge,
andm is the QI of the occluded edge along its unobscured portion,
then we must havem� n. If we find that for our estimated QI val-
uesm< n, we can increment the base QI of the cluster containing
the occluded edge byn�m, and propagate this information to other
clusters as well.

In practice, these observations often account for all clusters, and
consequently no ray tests are required in the current frame. In the
remaining cases we perform the needed ray tests efficiently through
a technique we callwalking.

4.4 Walking

Once relative QI values at all points of a silhouette cluster have
been determined with respect to the QIb at the base point, we must
determine the correct value ofb. The following technique does this,
assuming all objects in the scene are in front of the camera. (We
briefly discuss how to render immersive scenes below).

When one silhouette cluster is totally enclosed by another (in image
space), the enclosing silhouette may be the boundary of a region
which may totally obscure the enclosed silhouette. (See figure 2
(b) and (c). In (b), the enclosed silhouette is totally occluded, in
(c) it is not). We detect such enclosures and their consequent oc-
clusions as follows. First, we disregard silhouette curves which are
already known to be totally occluded. We also disregard any sil-
houette curve which touches the image space box,B, that bounds
all silhouette edges (as it can’t be totally enclosed). On each remain-
ing silhouette curve, we choose a pointU with currently assigned
QI of 0. Let Up denote the projection ofU. We identify enclos-
ing silhouettes by tracing a path in image space fromUp toward the
boundary ofB. From each enclosing silhouette curveSencountered
at an image space pointVp, we find the corresponding pointV onS.
We choose a branch of surface adjacent toSat V along which we
can begin tracing a path whose projection heads back towardUp,
if such a branch of surface exists. (Either both branches of surface
satisfy this condition or both do not – in which case we proceed to
the next enclosing silhouette). We then traverse the surface fromV
along the path whose projection retraces (in reverse direction) the
original path fromUp. If this surface walk succeeds in arriving at
a point which projects toUp, a depth test determines whetherU is
occluded by that portion of surface.

Our walking method does not work in general for immersive scenes
in which geometry may surround the camera. An alternative ap-
proach is to perform ray tests efficiently with the use of an octree
data structure which can be used to find intersections of a line seg-
ment with any triangles in the scene. One problem with this ap-
proach is that if there are any silhouette curves in the scene which
have gone undetected by the randomized algorithm for finding sil-
houettes, it’s possible for a small region of occlusion in a detected
silhouette to be propagated (incorrectly) throughout the entire sil-
houette. This can occur since intersections with the undetected sil-
houettes are not taken into account, but the ray test may count
occlusions due to surfaces bounded by the undetected silhouettes.
(The walking method does not count such surfaces). Taking steps to
decrease the probability of missing silhouette curves that lie within
the viewing frustum is one approach for minimizing this problem.

The discussion to this point has tacitly assumed that edges of in-
terest are all silhouette edges. These methods easily accomodate
border edges and other non-silhouette edges (such as creases or
decorative edges) as well. Border edges cause a change of�1 in



QI of edges passing behind them. Other edges cause no change in
QI of edges passing behind them.

4.5 Implementation details

We follow Loutrel’s [12] approach of projecting the silhouette
edges into image space and finding their intersections there. This
can be done with a sweep-line algorithm inO(k logk) time, where
k is the number of silhouette edges (see e.g. [15]). We found it
more convenient to use a spatial subdivision data structure which
divides the image space bounding box of the silhouette edges into a
grid of cells. Each silhouette edge is “scan converted” into the grid;
only edges which share a cell need be tested for intersection. This
method has worst-case complexity ofO(k2) but performs well on
average. We re-use the spatial subdivision grid in the walking step,
in order to find enclosing silhouettes whose projection intersects the
image-space path fromUp.

5 Rendering visible lines and surfaces

We demonstrate the use of our visibility algorithm to produce sev-
eral styles of nonphotorealistic renderings at interactive rates. The
accompanying video shows our system in action, and still images
produced by the renderer are included at the end of this paper.

World-space polylines to be rendered are first projected into the film
plane. Artistic or expressive strokes are then generated by modify-
ing the resulting 2D polylines. We use three techniques for generat-
ing expressive strokes: drawing the polylines directly, with slight
enhancements such as variations in line width or color (see fig-
ure 3(a)); high-resolution “artistically” perturbed strokes defined
by adding offsets to the polyline (figure 3(b)); and texture-mapped
strokes which follow the shape of the polyline (figure 3(c)). A vari-
ation on the first method is to render occluded lines in a style which
depends on the number of layers of surface occluding them (fig-
ure 3(e)).

In the second method we first parameterize the polyline by arc
length. We then define a new parametric curveq(t) based on the
original parametric curvep(t) by adding a vector offsetv(t) defined
in the tangent-normal basis, i.e.:

q(t) = p(t) + vx(t)p0(t) + vy(t)n(t).

The use of vector offsets allowsq(t) to double back on itself or form
loops. Using the tangent-normal basis allows perturbation patterns
to follow silhouette curvature. These offset vectors can either be
precomputed and stored in lookup tables or computed on the fly.
(We have implemented both techniques).

For precomputed offsets, we use a file format which specifies vec-
tor offsets. This format also incorporates “break” tags which sig-
nal the renderer to leave selected adjacent vertices unconnected in
q(t), allowing strokes to incorporate disconnected shapes, such as
circles, dashes, or letters. Variations on a small number of fun-
damental stroke classes (sawtooth, parabolic undulations, noise)
produce a wide variety of stroke styles: high frequency sawtooth
curves produce a charcoal style; low-frequency parabolic curves
produce a wandering, lazy style; high-frequency, low-magnitude
noise applied along the stroke normal and tangent directions pro-
duces a jittery hand-drawn style; low-frequency, high-magnitude
offsets along the stroke tangent produces a jerky, rough-sketched
look.

An alternative method for computing offsets is to use a spatially-
coherent noise function indexed by screen-space location. We use

a Perlin noise function [14] to define displacements along visible
lines.5

The third method builds a texture-mapped mesh using the polyline
as a reference spine. Each texture map represents a single brush-
stroke. We repeat the texture along the reference spine, approxi-
mately preserving its original aspect ratio. In order to generate the
mesh, we walk along the spine adding a perpendicular crossbar
at each vertex in the polyline and at each seam between repeat-
ing brushstrokes. Additionally, the width of the stroke can be made
to vary with lighting computed at the polyline vertices, becoming
thicker in darker areas and thinner in lighter areas. Our simple im-
plementation does not handle self-intersections of the texture map
mesh due to areas of high curvature.

Lastly we demonstrate a technique for generating curved shading
strokes in order to produce a richer artistic effect and to better con-
vey 3D information. (See figure 3(d)). Here, the principle of “econ-
omy of line” supports both the esthetic goals and that of maintain-
ing interactive frame rates. We use an extension of the hidden line
algorithm which allows us to derive visibility information across
surface regions. This method was described by Hornung [9].

We place shading strokes (orparticles) in world space (on the sur-
face) rather than define them in screen space. This is the approach
used by Meier [13] in her “painterly rendering” system. One advan-
tage of this approach is that it maintains frame-to-frame coherence.
We make the simplifying assumption that lighting comes from a
point source located at the camera position. This greatly simpli-
fies the task of computing stroke placement and density to achieve
a target tone. An even distribution of strokes on the surface pro-
duces higher apparent densities in regions slanting away from the
light – which is exactly where we want a darker tone. Our initial
implementation assigns one stroke particle to the center of each tri-
angle, which assumes a sufficiently even triangulation. Strokes are
not drawn when occluded or when the computed gray value (using
a lambertian shading model) falls below a threshhold.

Stroke directions are defined by the cross product of local surface
normal and the ray from the camera to the stroke location, so that
strokes line up with silhouette lines. Strokes have a preset world-
space length; those with sufficiently large screen-space length are
drawn as polylines. The direction of each segment of the polyline
is computed as above, with local surface normal taken as a blend
of normals at the vertices of the triangle at which the stroke is cen-
tered. Finally, we render the strokes using any of the artistic render-
ing methods described above.

6 Performance

We treat our models as subdivision surfaces, which allows us to re-
fine a given mesh so that it approximates a smooth surface with an
arbitrary degree of accuracy. (See [8] for a description of the type of
subdivision surfaces we use). The following tables list performance
statistics for our renderer operating on models which have been sub-
divided to the indicated number of polygons. Our test machine is a
200 MHz Sun UltraTM 2 Model 2200 with Creator 3D graphics.6

Our method performs particularly well on smooth meshes, since
these have fewer cusps and intersecting silhouette edges than irreg-
ular or bumpy surfaces.

In contrast, Winkenbach’s [21] pen-and-ink rendering system pro-
duces decidedly finer images, but takes several minutes per frame
to do so. (Over half that time is spent on visibility determination).

5We thank Paul Haeberli for this rendering method and the source code
for implementing it.

6We use the graphics capabilities for rendering lines only.



Model Triangles Frames/sec Triangles/sec
Two torii 65,536 30.58 2,004,091
Mechanical part 64,512 14.69 947,681
Venus 90,752 17.83 1,618,108

Table 1 Performance of basic visible-line renderer. Times were
measured on a 200 MHz Ultrasparc.

Model Triangles Frames/sec Slowdown
Two torii 65,536 5.27 5.8
Mechanical part 64,512 4.30 3.4
Venus 90,752 3.47 5.1

Table 2 Performance of basic line renderer when checking all edges
each frame – the slowdown is in comparison with the same models
listed in table 1.

Model Triangles Frames/sec Triangles/sec
Blobby teddy bear 7,776 6.37 49,588
Venus 5,672 9.2 52,195

Table 3 Performance of shaded line renderer. Models are those
shown in the accompanying video.

7 Future Work

We envision several avenues for future work. Our handling of shad-
ing strokes is restrictive and could be generalized to support arbi-
trary lighting conditions and to better control the density of strokes
in screen space to match a target gray value. The shaded stroke
renderings would be further enhanced by the addition of cast shad-
ows, which our visibility algorithm can easily be extended to find.
(The technique for computing shadow regions is straightforward,
and was used in [21]).

More generally, we feel that our exploration of rendering styles can
be developed much further. The rendering styles we have demon-
strated in this paper take a simple, automated approach in which
renderings are produced without regard to the content of the 3D
scene, or to the intent of its designer. A rich, unexplored area for
future research in NPR is the use of additional information in model
definitions which can be used to produce nonphotorealistic render-
ings which reflect information about a model beyond basic geomet-
ric attributes, or which target particular esthetic effects.

8 Acknowledgments

We thank Mark Oribello and Seung Hong for help with images and
video, Christine Waggoner for help with modelling, Loring Holden
for lending Dan a shell, and Paul Haeberli for the idea and source
code for displacing lines with Perlin noise. Also thanks to our
sponsors:NSF Graphics and Visualization Center, Alias/Wavefront,
Autodesk, Microsoft, Mitsubishi, NASA, Sun Microsystems, and
TACO.

References

[1] A. Appel. The notion of quantitative invisibility and the machine ren-
dering of solids. InProceedings of ACM National Conference, pp.
387–393, 1967.

[2] J. Blinn. Jim Blinn’s Corner, chapter 10, pp. 91–102. Morgan Kauf-
mann, 1996.

[3] D. Dooley and M. Cohen. Automatic illustration of 3d geometric mod-
els: Lines. InProceedings of the 1990 Symposium on Interactive 3D
Graphics, pp. 77–82, March 1990.

[4] G. Elber and E. Cohen. Hidden curve removal for free form surfaces.
In Proceedings of SIGGRAPH ’90, pp. 95–104, August 1990.

[5] J. Foley, A. van Dam, S. Feiner, and J. F. Hughes.Computer Graphics:
Principles and Practice, chapter 15, pp. 666–667. Addison-Wesley,
1992.

[6] R. Galimberti and U. Montanari. An algorithm for hidden line elimi-
nation.Communications of the ACM, 12(4):206–211, April 1969.

[7] P. Haeberli. Paint by numbers: Abstract image representations. In
Proceedings of SIGGRAPH ’90, pp. 207–214, August 1990.

[8] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J. McDonald,
J. Schweitzer, and W. Stuetzle. Piecewise smooth surface reconstruc-
tion. Proceedings of SIGGRAPH ’94, pp. 295–302, July 1994.

[9] C. Hornung. A method for solving the visibility problem. IEEE Com-
puter Graphics and Applications, pp. 26–33, 1984.

[10] J. Lansdown and S. Schofield. Expressive rendering: A review of
nonphotorealistic techniques.IEEE Computer Graphics and Appli-
cations, 15(3):29–37, May 1995.

[11] W. Leister. Computer generated copper plates.Computer Graphics
Forum, 13(1):69–77, 1994.

[12] P. Loutrel. A solution to the hidden-line problem for computer-
drawn polyhedra.IEEE Transactions on Computers, C-19(3):205–
213, March 1970.

[13] B. Meier. Painterly rendering for animation. InProceedings of SIG-
GRAPH ’96, pp. 477–484, August 1996.

[14] K. Perlin. An image synthesizer. InProceedings of SIGGRAPH ’85,
pp. 287–296, July 1985.

[15] F. P. Preparata and M. I. Shamos.Computational Geometry: An Intro-
duction, chapter 7. Springer-Verlag, 1985.

[16] T. Saito and T. Takahashi. Comprehensible rendering of 3d shapes. In
Proceedings of SIGGRAPH ’90, pp. 197–206, aug 1990.

[17] T. Strothotte, B. Preim, A. Raab, J. Schuman, and D. Forsey. How
to render frames and influence people.Computer Graphics Forum,
13(3):455–466, September 1994.

[18] I. Sutherland, R. Sproull, and R. Schumacker. A characterization of
ten hidden-surface algorithms.Computing Surveys, 6(1):1–55, March
1974.

[19] L. R. Williams. Topological reconstruction of a smooth manifold-
solid from its occluding contour. Technical Report 94-04, University
of Massachusetts, Amherst, MA, 1994.

[20] G. Winkenbach and D. Salesin. Computer-generated pen-and-ink il-
lustration. InProceedings of SIGGRAPH ’94, pp. 91–100, July 1994.

[21] G. Winkenbach and D. Salesin. Rendering parametric surfaces in pen
and ink. In Proceedings of SIGGRAPH ’96, pp. 469–476, August
1996.

[22] R. Zeleznik, K. Herndon, and J. F. Hughes. Sketch: An interface for
sketching 3d scenes. InProceedings of SIGGRAPH ’96, pp. 163–170,
August 1996.



(a)

(b) (d)

(c) (e)

Figure 3 (a) A mechanical part (model courtesy of the University of Washington). (b) Mechanical part rendered with sketchy lines. (c) A
charcoal-like rendering of terrain with texture-mapped strokes. (d) Human figure with expressive outline and shading strokes. (e) Mechanical
part with hidden lines in varied styles.


