
Painterly Rendering with Curved Brush Strokes of Multiple Sizes

Aaron Hertzmann
Media Research Laboratory

Department of Computer Science
New York University

ABSTRACT

We present a new method for creating an image with a hand-
painted appearance from a photograph, and a new approach to
designing styles of illustration. We “paint” an image with a
series of spline brush strokes. Brush strokes are chosen to
match colors in a source image. A painting is built up in a
series of layers, starting with a rough sketch drawn with a large
brush. The sketch is painted over with progressively smaller
brushes, but only in areas where the sketch differs from the
blurred source image. Thus, visual emphasis in the painting
corresponds roughly to the spatial energy present in the source
image. We demonstrate a technique for painting with long,
curved brush strokes, aligned to normals of image gradients.
Thus we begin to explore the expressive quality of complex
brush strokes.

Rather than process images with a single manner of
painting, we present a framework for describing a wide range of
visual styles. A style is described as an intuitive set of
parameters to the painting algorithm that a designer can adjust
to vary the style of painting. We show examples of images
rendered with different styles, and discuss long-term goals for
expressive rendering styles as a general-purpose design tool
for artists and animators.

CR Categories and Subject Descriptors: I.3.3
[Computer Graphics]: Picture/Image Generation — Display
algorithms

Additional Keywords: Non-photorealistic rendering

1. INTRODUCTION
Art and illustration have historically been the sole domain of
artists — skilled and creative individuals willing to devote
considerable time and resources to the creation of images.
Computer technology now allows the quick and easy creation
of highly realistic images of natural and imaginary scenes.
This technology automates the tedious details of photorealistic
rendering, although the process is still driven by the human
user, who selects the scene and rendering parameters. The
technology for producing non-photorealistic works such as
paintings and drawings is less advanced — the user must either
“paint” the entire image interactively with a paint program, or
else must process an image or 3D model through a narrowly-
defined set of non-photorealistic filters. Ideally, a human user

should be able to choose from a wide range of visual styles,
while leaving the mechanical details of image creation to a
computer. It is now possible to envision animating a feature-
length movie in a watercolor or oil painting style, a feat that
would be prohibitively labor-intensive with traditional media.
Non-photorealistic rendering can also be used to inexpensively
create attractive and concise images for graphic design and
illustration.

Most current computer painterly rendering algorithms use
very simple brush strokes that are all of equal size and shape.
Thus, the resulting images tend to appear mechanical in
comparison to hand-made work. In this paper, we present
techniques for painting an image with multiple brush sizes, and
for painting with long, curved brush strokes. We find the
resulting images to be more visually pleasing and “natural”
than those produced with previous algorithms.

Artists have long exploited the richness of natural media in
a variety of unique styles. Naturally, we would like our
computer algorithms to be capable of similar variety. Here we
do not attempt to imbue “creativity” into the algorithms, but
prefer a more cooperative relationship. Rather, the user selects
a composition and a rendering style, and the computer produces
an image from these choices. In this paper we show how to
create rendering styles suitable for use by a human designer.

1.1 Related work
Two principal challenges face the production of satisfying
non-photorealistic images. The first of these, physical
simulation, attempts to closely mimic the physical appearance
of real-world artistic media. Impressive systems have been
demonstrated for watercolor [5] and a variety of other media [7],
in which the user places brush strokes interactively or semi-
interactively. Wet media such as watercolor and oil paint are
the most challenging media to simulate, because of the
complex and rich set of effects produced by fluid flow and
transparency. In this paper, we are not concerned with a
convincing physical simulation; Haeberli [8] and others have
shown that striking compositions can be produced even with
very simple painting models. A related area of research is
multiresolution painting [2,15], a set of techniques for
interactive painting at all scales.

This paper extends the complementary line of research:
automatic painting and drawing without human intervention.
Cohen [4,13] casts the problem in terms of artificial
intelligence; his system, named Aaron, follows a set of
randomized rules to create original compositions in a specific
style. Aaron even has a robotic painting device. Unlike
Cohen's work, we assume that the composition is provided to
the system in the form of an input image to be painted. Hence,
we can focus on creating a painterly style, and need not deal
with the problem of creativity in designing a composition.
Winkenbach and Salesin [20,21] describe a system for
automatically creating pen-and-ink illustrations from 3D
models, and Salisbury et al. [16] describe a technique for

email: hertzman@mrl.nyu.edu ; URL: http://www.mrl.nyu.edu/~hertzman

ACM Copyright Notice
Copyright ©1998 by the Association for Computing Machinery, Inc. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires specific permission and/or a fee.

producing pen-and-ink illustrations from images. Curtis et al.
[5] produce watercolor paintings by a semi-automatic
algorithm. However, their algorithm does not necessarily
produce visible brush strokes, and thus lacks a painterly
quality. A common method for processing an image for a
painterly effect [1,7,11,14,17,22] is to place a jittered grid of
short brush strokes over an image. These brush strokes may be
aligned to the normals of image gradients, and all have the
same size and shape. (Litwinowicz [11] uses clipped strokes;
Treavett and Chen [17] use statistical analysis of the source
image to guide stroke size, orientation and placement.) [14]
and [17] do vary brush stroke size with respect to local detail
levels. They appear to paint each image in a single pass, and
thus lack the ability to refine the painting with multiple
passes. [14] and [22] allow rendering parameters to be
encapsulated and saved as “styles.”

1.2 Overview
In the next section, we present a method for painting with
different brush sizes to express various levels of detail in an
image, and a technique for painting long, curved brush strokes
to express continuous color regions in an image. In Section 3,
we show how to abstract the rendering process to provide many
painting styles. Finally, we discuss some future directions for
non-photorealistic rendering.

2. PAINTING TECHNIQUES

2.1 Varying the brush size
Often, an artist will begin a painting as a rough sketch, and go
back over the painting with a smaller brush to add detail. While
much of the motivation for this technique does not apply to
computer algorithms,1 it also yields desirable visual effects. In
Figure 1, note the different character of painting used to depict
the blouse, sand, children, boat and sky. Each has been painted
with different brush sizes as well as different stroke styles. This
variation in stroke quality helps to draw the most attention to
the woman and figures, and very little to the ground; in other
words, the artist has used fine strokes to draw our attention to
fine detail. (Other compositional devices such as shape,
contrast and color are also used. These are not addressed in this
paper.) To use strokes of the same size for each region would
“flatten” the painting; here the artist has chosen to emphasize
the figure over the background. In our image processing
algorithm, we use fine brush strokes only where necessary to
refine the painting, and leave the rest of the painting alone.
Our algorithm is similar to a pyramid algorithm [3], in that we
start with a coarse approximation to the source image, and add
progressive refinements with smaller and smaller brushes.2

Our painting algorithm (Figure 2) takes as input a source
image and a list of brush sizes. The brush sizes are expressed in
radii R 1 . . . R n. The algorithm then proceeds by painting a
series of layers, one for each radius, from largest to smallest.
The initial canvas is a constant color image.

1 One motivation is to establish the composition before committing fine
details, so that the artist may experiment and adjust the composition.
2 In fact, our original painting algorithm was based on the Laplacian
pyramid: difference images (Li) guided brush stroke placement.
However, the difference images assume a perfect reconstruction of the
lower levels of the pyramid, and our reconstruction is deliberately
imperfect. Thus, refinements at later levels of the pyramid caused
unwanted artifacts. Our present algorithm avoids this problem by
creating the difference images after every step of the painting.

For each layer R i, we first create a reference image by
blurring the source image. Blurring is performed by
convolution with a Gaussian kernel of standard deviation fσ R i,
where fσ is some constant factor.3 The reference image
represents the image we want to approximate by painting with
the current brush size. The idea is to use each brush to capture
only details which are at least as large as the brush size. We use
a layer subroutine to paint a layer with brush R i, based on the
reference image. This procedure locates areas of the image that
differ from the reference image and covers them with new brush
strokes. Areas that match the source image color to within a
threshold (T) are left unchanged. The threshold parameter can
be increased to produce rougher paintings, or decreased to
produce paintings that closely match the source image.

This entire procedure is repeated for each brush stroke size.
A pseudocode summary of the painting algorithm follows.

function paint(sourceImage,R1 ... Rn)
{

canvas := a new constant color image

// paint the canvas
for each brush radius Ri,

 from largest to smallest do
{

// apply Gaussian blur
referenceImage = sourceImage * G(fσ Ri)
// paint a layer
paintLayer(canvas, referenceImage, Ri)

}

return canvas
}

3 Non-linear diffusion [19] may be used instead of a Gaussian blur to
produce slightly better results near edges. (Figure 5(a)).

Figure 1: Detail of At The Seashore, Young Woman having
her Hair Combed by her Maid, Edgar Degas, 1876-7. Note that
the small brush strokes are only used in regions of fine detail
(such as the children in the background), and draw attention to
these regions.

Each layer is painted using a simple loop over the image
canvas. The approach is adapted from the algorithm described
in [11], which placed strokes on a jittered grid. That approach
may miss sharp details such as lines and points that pass
between grid points. Instead, we search each grid point’s
neighborhood to find the nearby point with the greatest error,
and paint at this location. All strokes for the layer are planned
at once before rendering. Then the strokes are rendered in
random order to prevent an undesirable appearance of regularity
in the brush strokes.

procedure paintLayer(canvas,referenceImage, R)
{

S := a new set of strokes, initially empty

// create a pointwise difference image
D := difference(canvas,referenceImage)

grid := fg R

for x=0 to imageWidth stepsize grid do
for y=0 to imageHeight stepsize grid do
{
// sum the error near (x,y)
M := the region (x-grid/2..x+grid/2,

y-grid/2..y+grid/2)

areaError := i j M, ∈∑ Di,j / grid2

if (areaError > T) then
{

// find the largest error point
(x1,y1) := arg max i j M, ∈ Di,j

s :=makeStroke(R,x1,y1,referenceImage)
add s to S

}
}

paint all strokes in S on the canvas,
in random order

}

The following formula for color difference is used to create
the difference image:4 |(r1,g1,b1) – (r2,g2,b2)| = ((r1 – r2)

2 + (g 1 –
g2)

2 + (b1 – b2)
2)1/2. In order to cover the canvas with paint, the

canvas is initially painted a special “color” C such that the
difference between C and any color is MAXINT.

In practice, we avoid the overhead of storing and
randomizing a large list of brush strokes by using a Z-buffer.
Each stroke is rendered with a random Z value as soon as it is
created. The Z-buffer is cleared before each layer.

“makeStroke()” in the above code listing is a generic
procedure that places a stroke on the canvas beginning at
(x1,y 1), given a reference image and a brush radius. fg is a
constant grid size factor. Following [9], Figure 3(a) shows an
image illustrated using a “makeStroke()” procedure which
simply places a circle of the given radius at (x,y), using the
color of the source image at location (x,y). Following [11],
Figure 3(b) shows an image illustrated with short brush
strokes, aligned to the normals of image gradients.5 Note the
regular stroke appearance. In the next section, we will present
an algorithm for placing long, curved brush strokes, closer to
what one would find in a typical painting.

Our technique focuses attention on areas of the image
containing the most detail (high-frequency information) by

4 We have also experimented with more perceptually correct metrics,
such as distance in CIE LUV [6] space. Surprisingly, we found that these
often gave worse results.
5 Note that no stroke clipping is used. Instead, small scale refinements of
later layers automatically “fix” the edges of earlier layers.

placing many small brush strokes in these regions. Areas with
little detail are painted only with very large brush strokes.
Thus, strokes are appropriate to the level of detail in the source
image.

This choice of emphasis assumes that detail areas contain
the most “important” visual information. Other choices of
emphasis are also possible — for example, emphasizing
foreground elements or human figures — but these would require
semantic interpretation of the input images, which is known to
be an extremely difficult problem in computer vision. The
choice of emphasis could also be provided by a human user
[16], or as output from a 3D renderer.

2.2 Creating curved brush strokes
Individual brush strokes in a painting can convey shape,
texture, overlap, and a variety of other image features. There is
often something quite beautiful about a long, curved brush
stroke that succinctly expresses a gesture, the curve of an
object or the play of light on a surface. To our knowledge, all
previous automatic painting systems use a series of small brush
strokes, identical aside from color and orientation, or else
apply pigment simultaneously to large regions of an image. In
contrast, we present a method for painting long, continuous
curves. In particular, we focus on painting solid strokes of
constant thickness to approximate the coloration of the
reference image; exploiting the full expressivity of brush
strokes is far beyond the scope of this paper. We model brush
strokes as anti-aliased cubic B-splines, each with a given color
and thickness. Each stroke is rendered by dragging a circular
brush mask along the sweep of the spline.

In our system, we limit brush strokes to constant color, and
use image gradients to guide stroke placement. Other authors
have also used this concept [11,8,18] for placing strokes. The
idea is that the strokes will represent contours of the image
with roughly constant color. Our method is to place control
points for the curve by following the normal of the gradient.
When the color of the stroke deviates from the color under a
control point of the curve by more than a specified threshold,
the stroke ends at that control point. One can think of this as
placing splines to roughly match the isocontours of the
reference image.

A more detailed explanation of the algorithm follows. The
spline placement algorithm begins at a given point in the
image (x0,y 0), with a given a brush radius R. The stroke is
represented as a list of control points, a color, and a brush
radius. The control point (x0,y 0) is added to the spline, and the
color of the reference image at (x0,y 0) is used as the color of the
spline.

We then need to compute the next point along the curve.
The gradient (θ0) for this point is computed from the Sobel-
filtered luminance6 of the reference image. The next point
(x1,y 1) is placed in the direction (θ0 + π/2) at a distance R from
(x0,y 0) (Figure 4(a)) . We use the brush radius R as the distance
between control points because R represents the level of detail
we will capture with this brush size. This means that very large
brushes create broad sketches of the image, to be later refined
with smaller brushes.

6 The luminance of a pixel is computed with L(r,g,b) = 0.30*r + 0.59*g +
0.11*b [6].

(a) (b)

(c) (d)

Figure 2: Painting with three brushes . (a) A source image. (b) The first layer of a painting, after painting with a
circular brush of radius 8. (c) The image after painting with a brush of radius 4. (d) The final image, after painting with a
brush of size 2. Note that brush strokes from earlier layers are still visible in the painting.

(a) (b)

Figure 3: Applying the mult iscale algori thm to other types of brush strokes . Each of these paintings was
created with brush strokes of radius 8, 4, and 2. (a) Brush strokes are circles, following [9]. (b) Brush strokes are short, anti-
aliased lines placed normal to image gradients, following [11]. The line length is 4 times the brush radius.

The remaining control points are computed by repeating
this process of moving along the image normal to the image
gradients and placing control points. The stroke is terminated
when (a) the predetermined maximum stroke length is reached,
or (b) the color of the stroke differs from the color under the
last control point more than it differs from the current painting
at that point. The maximum stroke length prevents an infinite
loop from occurring. For a point (x i, y i), we compute a gradient
direction θi at that point. Note, however, that there are actually
two normal directions, and so two candidates for the next
direction: θi + π/2, and θi - π/2. We choose the next direction so
as to minimize the stroke curvature: we pick the direction D i so
that the angle between D i and D i-1 is less than or equal to π/2.
(Figure 4(b)).

We can also exaggerate or reduce the brush stroke curvature
by applying an infinite impulse response filter to the stroke
directions. The filter is controlled by a single predetermined
filter constant, fc. Given the previous stroke direction D’i-1 =
(dx’ i-1, dy’i-1), and a current stroke direction D i = (dx i,dy i), the
filtered stroke direction is D’i = fc D i + (1-fc) D’i-1 = (fc dxi + (1-fc)
dx’ i-1, f c dyi + (1-fc) dy’i-1).

A pseudocode summary of the entire stroke placement
procedure follows.

function makeSplineStroke(x0,y0,R,refImage)
{

strokeColor = refImage.color(x0,y0)
K = a new stroke with radius R

and color strokeColor
add point (x0,y0) to K
(x,y) := (x0,y0)
(lastDx,lastDy) := (0,0)

for i=1 to maxStrokeLength do
{

if (i > minStrokeLength and
|refImage.color(x,y)-canvas.color(x,y)|<
|refImage.color(x,y)-strokeColor|) then

return K

// detect vanishing gradient
if (refImage.gradientMag(x,y) == 0) then
return K

// get unit vector of gradient
(gx,gy) := refImage.gradientDirection(x,y)
// compute a normal direction
(dx,dy) := (-gy, gx)

// if necessary, reverse direction
if (lastDx * dx + lastDy * dy < 0) then
(dx,dy) := (-dx, -dy)

// filter the stroke direction
(dx,dy) :=fc*(dx,dy)+(1-fc)*(lastDx,lastDy)
(dx,dy) := (dx,dy)/(dx2 + dy 2)1/2

(x,y) := (x+R*dx, y+R*dy)
(lastDx,lastDy) := (dx,dy)

add the point (x,y) to K
}
return K

}

The minimum stroke length prevents the speckled
appearance of very short strokes. To render a curved stroke, the
spline is first computed by subdivision. An anti-aliased,
circular mask is then drawn along the path of the curve.

We have shown how to draw a long, curved brush stroke, to
represent continuous color regions in an image. This method
works best in combination with the layering method of Section
2.1; see Figure 2(b) for an example of curved brush strokes
without layering. In the future, we would like to enhance this

technique to depict other features, such as contours and texture,
and to use a richer stroke model, including pressure, bristles,
wetness, and tapering.

3. RENDERING STYLES
There is no one “right” algorithm for non-photorealistic
rendering, just as there is no “right” approach to painting. We
believe that the graphic designer or artist using a rendering
system should be allowed to vary the computer’s “artistic
approach,” rather than being forced to employ a single style of
painting for every picture. In order to quantify the notion of
painterly styles, we propose the use of style parameters to
control the rendering process. These parameters should provide
an intuitive way to vary visual qualities of the painting. Some
possible style parameters include stroke curvature and how
closely the painting should approximate the original. To be
useful to a designer, style parameters should exhibit, as much
as possible, the following four properties:

• Intu i t iveness — Each style parameter should
correspond to a visual quality of the painting. These
qualities should be intuitive to an artist without any
technical computer knowledge.
• C o n s i s t e n c y — Styles should produce the same
“visual character” for different images. For example, we
should be able to choose a style based on a single frame of a
video sequence, and then render the rest of the sequence in
the same style.
• Robustness — Each parameter should produce
reasonable results over a predetermined range, without
“breaking” for some values. A default value should be
available, so that extra parameters provide the user with

(a) (b)

(c)
Figure 4 : Pa in t ing a brush s t roke . (a) A brush
stroke begins at a control point (x0,y0) and continues in
direction D0, normal to the gradient G0. (b) From the
second point (x1,y1), there are two normal directions to
choose from: θ1 + π/2, and θ1 - π/2. We choose D1, in
order to reduce the stroke curvature. (c) This procedure is
repeated to draw the rest of the stroke. The stroke will be
rendered as a cubic B-spline, with the (xi,y i) as control
points. The distance between control points is equal to the
brush radius.

more options without adding any extra burden. Increasing a
parameter should always monotonically increase or
decrease some quality of the painting, rather than cause it to
fluctuate.
• Independence — Style parameters should be
independent of one another. Changing line thicknesses, for
example, should not affect the saturation of an image.

A group of style parameters describes a space of styles; a set of
specific values can be encapsulated in a style. Styles may be
designed to imitate the styles of famous artists, or may
represent other approaches to painting. Styles can be collected
into libraries, for later use by designers. Although there may
conceivably be hundreds of rendering parameters, the designer
need only adjust the parameters appropriate to an application.
Some commercial painterly rendering products [14,22] provide
the ability to vary rendering parameters and to save sets of
parameters as distinct styles.

3.1 Some style parameters
In the experiments that follow, we have used the following
style parameters.

• Approximat ion threshold (T) — How closely the
painting must approximate the source image. Higher values
of this threshold produce “rougher” paintings. (See Section
2.1)
• Brush s i z e s — Rather than requiring the user to
provide a list of brush sizes (R 1 ... R n), we have found it
more useful to use three parameters to specify brush sizes:
Smallest brush radius (R 1), Number of Brushes (n), and Size
Ratio (R i+1/R i). We have found that a limited range of brush
sizes often works best. (See Section 2.1)
• Curvature Filter (fc) — Used to limit or exaggerate
stroke curvature. (See Section 2.2)
• Blur Factor (fσ) — Controls the size of the blurring
kernel. A small blur factor allows more noise in the image,
and thus produces a more “impressionistic” image. (See
Section 2.1)
• Minimum and maximum stroke l e n g t h s
(minLength, maxLength) — Used to restrict the possible
stroke lengths. Very short strokes would be used in a
“pointillist” image; long strokes would be used in a more
“expressionistic” image. (See Section 2.2)
• Opacity (α) — Specifies the paint opacity, between 0
and 1. Lower opacity produces a wash-like effect.
• Grid size (fg) — Controls the spacing of brush strokes.
The grid size times the brush radius (fg R i) produces the step
size in the “paintLayer()” procedure. (See Section 2.1)
• Color J i t ter — Factors to randomly add jitter to hue
(jh), saturation (js), value (jv), red (jr), green (jg) or blue (jb)
color components. 0 means no random jitter; larger values
increase the factor.

The threshold (T) is defined in units of distance in color space.
Brush sizes are defined in units of distance; we specify sizes in
pixel units, although resolution-independent measures (such as
inches or millimeters) would work equally well. Brush length is
measured in the number of control points. The remaining
parameters are dimensionless.

3.2 Experiments
In this section, we demonstrate four painting styles:
“Impressionist,” “Expressionist,” “Colorist Wash,” and
“Pointillist.” Figure 6 shows the application of the first three

of these styles to two different images. The distinct character of
each style demonstrates the consistency of the painting
algorithm. (Figures 3(f) and 5 are also rendered in the
“Impressionist” style.)

Figure 7 shows a continuous transition between the
“Pointillist” style and the “Colorist Wash” style. By
interpolating style parameter values, we can “interpolate” the
visual character of rendering styles. This demonstrates the
robustness of the parameters.

The styles are defined as follows.

• “Impress ionis t” — A normal painting style, with no
curvature filter, and no random color. T = 100, R=(8,4,2),
fc=1, fs=.5, a=1, fg=1, minLength=4, maxLength=16
• “Express ionis t” — Elongated brush strokes. Jitter is
added to color value. T = 50, R=(8,4,2), fc=.25, fs=.5, a=.7,
fg=1, minLength=10, maxLength=16, jv=.5
• “Coloris t Wash” — Loose, semi-transparent brush
strokes. Random jitter is added to R, G, and B color
components. T = 200, R=(8,4,2), fc=1, fs=.5, a=.5, fg=1,
minLength=4, maxLength=16, jr=jg=jb=.3
• “ P o i n t i l l i s t ” — Densely-placed circles with random
hue and saturation. T = 100, R=(4,2), fc=1, fs=.5, a=1,
fg=.5, minLength=0, maxLength=0, jv=1, jh=.3. (This is
similar to the Pointillist style provided by [22].)

4. DISCUSSION AND FUTURE WORK
We have presented a new algorithm for producing paintings
from images. Brush stroke sizes are selected to convey the
level of detail present in the source image using a multiscale
algorithm. Long, curved brush strokes are created by moving in
a direction normal to image gradients. The painting may be
made sketchier or more precise by changing a threshold
parameter. Stroke curvature may be limited or exaggerated by
filtering stroke direction. These and other parameters describe a
space of rendering styles that can be created and modified by
artists and graphic designers.

Painting is a complex and rich pursuit, involving many
approaches and many ways to interpret a scene. Our goal in
developing painting algorithms is similar to a goal pursued by
artists: to develop expressive visual languages. Future work in
this area should extend the strategies available to non-
photorealistic rendering algorithms, both image-based and
model-based. We should be able to draw inspiration from
various artistic approaches, as well as from computer vision,
cognitive science, and artificial intelligence.

Brush strokes may convey many physical properties such
as color, texture, lighting, 3D shape, gesture, and overlap, as
well as semantic elements such as emphasis, mood, and
emotion. One long-term goal is to develop an approach to
painting that will convey the “important” features of an image
with carefully chosen brush strokes.

A relaxation-based approach [8,18] may also be useful for
computer painting. Although relaxation algorithms are usually
more compute-intensive than are direct algorithms, they do
allow many visual constraints to be embedded into a single
energy function, some of which may be difficult to achieve by a
direct method.

Another interesting line of work is real-time processing of
video [11] and models [12] with different styles. New
techniques will be required to maintain temporal coherence for
complex brush strokes with various size and shape attributes,
while maintaining or changing rendering styles. One can
envision a real-time interactive system in which the rendering
style varies with the mood or the action.

Acknowledgements
Many thanks to Ken Perlin for useful discussions and support
throughout the course of this work. Thanks to Rich Radke, Jon
Meyer, and Henning Biermann for discussions. The source
images for Figures 5(b) and 7 were provided by Jon Meyer. The
source image for Figure 6(b) was used by kind permission of
CND, Inc. The author is supported by NSF grant DGE-9454173.

5. REFERENCES

[1] ADOBE SYSTEMS. Adobe Photoshop 4.0

[2] DEBORAH F. BERMAN, JASON T. BARTELL, DAVID H.
SALESIN. Multiresolution Painting and Compositing.
SIGGRAPH 94 Conference Proceedings, pp. 85-90. July 1994.

[3] PETER J. BURT AND EDWARD H. ADELSON. The Laplacian
Pyramid as a Compact Image Code. IEEE Transactions on
Communications. 31:532-540, April 1983.

[4] HAROLD COHEN. The Further Exploits of Aaron, Painter.
Stanford Humanities Review. Vol. 4, No. 2. pp. 141-158. 1995

[5] CASSIDY J. CURTIS, SEAN E. ANDERSON, JOSHUA E. SEIMS,
KURT W. FLEISCHER, DAVID H. SALESIN. Computer-Generated
Watercolor. SIGGRAPH 97 Conference Proceedings, pp. 421-
430. August 1997.

 [6] JAMES FOLEY, ANDRIES VAN DAM, STEPHEN FEINER, JOHN

HUGHES. Computer Graphics: Principles and Practice, Addison-
Wesley, 1995.

[7] FRACTAL DESIGN CORPORATION. Fractal Design Painter.

[8] PAUL HAEBERLI. Paint by numbers: Abstract image
representations. Computer Graphics (SIGGRAPH 90
Conference Proceedings), 24(4):207-214, August 1990

[9] PAUL HAEBERLI. The Impressionist.
http://www.sgi.com/graphica/impression

[10] JOHN LANSDOWN AND SIMON SCHOFIELD. Expressive
rendering: A review of nonphotorealistic techniques. IEEE
Computer Graphics and Applications, 15(3):29-37, May 1995.

[11] PETER LITWINOWICZ. Processing Images and Video for An
Impressionist Effect. SIGGRAPH 97 Conference Proceedings,
pp. 407-414. August 1997.

[12] LEE MARKOSIAN, MICHAEL A. KOWALSKI, SAMUEL J.
TRYCHIN, LUBOMIR D. BOURDEV, DANIEL GOLDSTEIN, JOHN F.
HUGHES. Real-Time Nonphotorealistic Rendering. SIGGRAPH
97 Conference Proceedings, pp. 415-420. August 1997.

[13] PAMELA MCCORDUCK. AARON's CODE: Meta-Art,
Artificial Intelligence, and the Work of Harold Cohen. New
York: W. H. Freeman & Co. 225 pages. 1991.

[14] MICROSOFT CORPORATION. Microsoft Image Composer
1.5

[15] KEN PERLIN AND LUIZ VELHO. LivePaint: Painting with
Procedural Multiscale Textures, SIGGRAPH 95 Conference
Proceedings, pp. 153-160. 1995.

[16] MICHAEL P. SALISBURY, MICHAEL T. WONG, JOHN F.
HUGHES, DAVID H. SALESIN. Orientable Textures for Image-
Based Pen-and-Ink Illustration. SIGGRAPH 97 Conference
Proceedings, pp. 401-406. August 1997.

[17] S. M. F. TREAVETT AND M. CHEN. Statistical Techniques
for the Automated Synthesis of Non-Photorealistic Images.
Proc. 15th Eurographics UK Conference, March 1997.

[18] GREG TURK AND DAVID BANKS. Image-Guided Streamline
Placement. SIGGRAPH 96 Conference Proceedings, pp. 453-
460. August 1996.

[19] JOACHIM WEICKERT, BART M. TER HAAR ROMNEY, MAX A.
VIERGEVER. Efficient and reliable schemes for nonlinear
diffusion filtering. IEEE Transactions on Image Processing.
March 1998.

[20] GEORGES WINKENBACH AND DAVID H. SALESIN. Computer-
Generated Pen-and-Ink Illustration. SIGGRAPH 94 Conference
Proceedings, pp. 91-100. July 1994.

[21] GEORGES WINKENBACH AND DAVID H. SALESIN. Rendering
Parametric Surfaces in Pen and Ink. SIGGRAPH 96 Conference
Proceedings, pp. 469-476. August 1996.

[22] XAOS TOOLS. Paint Alchemy 2.0

(a) (b)
Figure 5: Two “impressionist” paintings.

(a)

(b)
F i g u r e 6 : A p p l y i n g d i f f e r e n t p a i n t e r l y s t y l e s . Left column: “Impressionist.” Middle column: “Expressionist.” Right
column: “Colorist Wash.” Note that the styles have a consistent visual appearance when applied to different images.

(a) (b) (c)
Figure 7 : In t e rpo la t ing r ender ing s t y l e s . Images (a) and (c) are rendered in the “Colorist Wash” and “Pointillist” styles,
respectively. The average of their parameters was used to produce the style for (b). (The number of layers (n) was rounded up to 3.)

