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Abstract

This paper presents new algorithms and techniques for rendering
parametric free-form surfaces in pen and ink. In particular, we intro-
duce the idea of “controlled-density hatching” for conveying tone,
texture, and shape. The fine control over tone this method provides
allows the use of traditional texture mapping techniques for speci-
fying the tone of pen-and-ink illustrations. We also show how a pla-
nar map, a data structure central to our rendering algorithm, can be
constructed from parametric surfaces, and used for clipping strokes
and generating outlines. Finally, we show how curved shadows can
be cast onto curved objects for this style of illustration.

CR Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Pic-
ture/Image Generation; I.3.6 [Computer Graphics]: Methodology and Tech-
niques.

Additional Key Words: non-photorealistic rendering, comprehensible ren-
dering, pen-and-ink rendering, resolution-dependent rendering, stroke tex-
tures, controlled-density hatching, outlining, shadow algorithms.

1 Introduction

In many applications—from architectural design, to medical texts,
to industrial maintenance and repair manuals—a stylized illustration
is often more effective than photorealism. Illustrations convey infor-
mation better, consume less storage, are more easily reproduced, are
more capable of conveying information at various levels of detail,
and are in many respects more attractive than photorealistic images.

In a previous paper [22], we introduced a system for automatically
generating pen-and-ink illustrations of three-dimensional architec-
tural models. In that paper, we showed how many of the principles of
traditional pen-and-ink rendering, such as achieving tones through
texture, could be simulated algorithmically. In particular, we intro-
duced the concept of a “prioritized stroke texture”, which is used to
reproduce arbitrary tones and convey textures simultaneously.

However, this earlier work was limited to polyhedral models. With
curved surfaces, a number of the fundamental assumptions we used
break down. Most notably, in this earlier work we assumed flat-
shaded surfaces, and we used BSP trees both for creating a planar
map data structure and for clipping individual strokes quickly.

In this paper, we generalize our previous work to handle curved
surfaces formulated parametrically, such as B-splines surfaces,
NURBS, and surfaces of revolution. We introduce a mechanism
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for creating “controlled-density hatching,” which allows strokes to
gradually disappear in light areas of a surface or in areas where too
many strokes converge together, and allows new strokes to grad-
ually come into existence in dark areas or areas in which the ex-
isting strokes begin to diverge too much. With controlled-density
hatching, we are able to exert fine-grain control over the tone de-
picted in various areas of a pen-and-ink image. We use this newly ac-
quired ability, together with traditional (image-based) texture map-
ping techniques, to extend considerably the repertoire of effects that
can be achieved with stroke textures. We demonstrate these effects
with texture maps used for surface detail, bump mapping, and envi-
ronment (“reflection”) mapping. In addition, we show how a planar
map can be created and strokes efficiently clipped without the use of
BSP trees. Finally, we describe a simple method to handle the cast-
ing of curved shadows onto curved objects.

1.1 Related work

A few authors have addressed similar goals in their published work.

Dooley and Cohen proposed a system to enhance a traditional
shaded images with illustration techniques [3, 4]. They showed how
line and surface qualities could be customized by the user to create
more effective images.

Saito and Takahashi [18] used “G-buffers” and image processing
techniques to enhance ray-traced images with illustration features.
Their system handles outlining, hatching, and shadows. However,
the use of strokes that we propose allows perhaps more expressive-
ness and extends the range of illustrations that can be created auto-
matically.

Leister presented a technique to emulate copper-plate render-
ing [12], an engraving technique used for old styles of printing. A
ray-tracing approach is used to render curves on free-form objects.
These curves lie at the intersection of parallel planes with the 3D ob-
ject being rendered. An advantage of this approach is that it easily
handles reflections and shadowing.

The Piranesi system proposed by Lansdown and Schofield [11] also
uses non-photorealistic techniques to create illustrations from 3D
models. Piranesi uses a standard graphics pipeline to create a 2D ref-
erence image akin to a G-buffer. The user is then allowed to select
specific regions of the image and apply textures that emulate natural
media interactively or automatically.

Elber [5] described an algorithm to cover NURBS surfaces with iso-
parametric curves, thus emulating a form of line-art rendering. How-
ever, his approach does not address a number of the issues in pen-
and-ink illustration considered in this paper, such as building tone
with stroke textures, outlining objects only when necessary, and ren-
dering shadows.

1.2 Overview

The rest of this paper is organized as follows. Section 2 gives a brief
review of some of the key principles of pen-and-ink illustration, and
summarizes the system architecture used for creating illustrations
of polyhedral models. Section 3 describes the various algorithms



that lie at the heart of our system. Section 4 describes the particu-
lar stroke textures we used for the figures in this paper, and gives
statistics for these results. Finally, Section 5 suggests some areas for
future work.

2 Background

In this section, we briefly review some of the principles of pen-and-
ink illustration; much more detailed studies can be found in a num-
ber of texts [9, 13, 17]. We then describe some of the key architec-
tural features of the pen-and-ink illustration system we introduced in
our previous work, upon which the results in this paper are based.

2.1 Principles of pen-and-ink illustration

Some of the key principles of pen-and-ink illustration include:

� Strokes. Strokes are the fundamental building-blocks of pen-and-
ink illustration. The thickness and density of the strokes is varied
to achieve subtle shading effects. In addition, strokes should also
have some variation in thickness and waviness so as not to appear
too “mechanical.”

� Texture. Texture results from a large number of pen strokes placed
in juxtaposition. The character of the strokes is important for con-
veying texture—for example, crisp, straight lines are good for
“glass,” whereas rough, sketchy lines are good for “old” mate-
rials.

� Tone. The perceived grey level or “tone” is a function of the den-
sity of the strokes in a particular region of the illustration. The
same strokes that are used to convey texture must also be used to
achieve the desired tone.

� Outline. Outlining play an essential role in illustration; indeed,
outlining is one of the key features that differentiates illustration
from photorealistic imagery. Outlines are generally introduced
only where they are required to disambiguate regions of similar
tone. The quality of the outline stroke must also be varied to con-
vey texture.

2.2 System architecture for polyhedral models

The system for automatically producing pen-and-ink illustrations of
polyhedral models, upon which the results in this paper are based,
is not very different from a traditional photorealistic renderer. The
input to the system consists of a 3D polyhedral model, one or more
light sources, and a camera specification. The output is an illustra-
tion in the style of pen and ink.

To render a scene, the polyhedral renderer begins by computing the
visible surfaces and the shadow polygons, using 3D BSP trees for
both operations [1, 7]. The outcome is a set of convex polygons that
can be ordered in depth with respect to the view point. The ren-
derer uses these polygons to build both a 2D BSP tree and a pla-
nar map representations of the visible surfaces in the scene. It then
renders each region in the planar map using a procedural stroke tex-
ture. The collection of strokes required to render each flat-shaded
surface is generated without considering occlusions. Each stroke is
then clipped against the visible portions of the surface using the 2D
BSP tree. Finally, the outline strokes are drawn by considering all
the edges of the planar map, and rendering only those edges neces-
sary for the illustration, according to the outlining principles.

3 Algorithms

The pen-and-ink rendering system that we describe in this paper uti-
lizes the same basic architecture as the polygonal renderer we intro-
duced in our earlier work. It also uses the same procedural stroke
texture idea, and relies on a planar map for generating outlines and
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clipping strokes. However, in the presence of free-form surfaces,
many of the techniques used in the polygonal renderer no longer
work. In this section, we present our solutions to these problems.

3.1 Controlled-density hatching

To produce pen-and-ink illustrations from parametric surfaces, the
most fundamental change from a polyhedral renderer is in the gen-
eration of the stroke textures.

Curved surfaces require a much more sophisticated approach than
flat-shaded polygonal surfaces, which can be hatched in a uniform
fashion. First, we will need a way of orienting the hatching strokes
along a surface. Second, we will need some mechanism for allowing
strokes to gradually disappear in light areas of a surface or in areas
where too many strokes converge together. Conversely, we will also
need to allow new strokes to gradually appear in dark areas or areas
in which the existing strokes begin to diverge too much. We will call
such a mechanism controlled-density hatching.1

To solve the first problem, that of choosing an orientation for the
hatching strokes, we simply use a grid of lines in the parameter do-
main (u; v). The grid consists of parallel lines running in one or
more user-specified directions. For most illustrations, we simply use
isoparametric curves, which run parallel to u and/or v.

We now turn to the second problem, that of achieving controlled-
density hatching. Achieving a given tone by hatching an arbitrary
parametric surface is a non-trivial problem. Figure 1 illustrates the
difficulty, even for the case of a simple two-dimensional transfor-
mation. In this case, rendering isoparametric curves with constant
thickness results in an image with varying tones. Our solution is to
adjust the thickness of the strokes in order to keep the “apparent
tone” constant. Figure 2 illustrates the same concept, but in this case,
for a perspective view of a sphere.

In order to solve this problem formally, we begin by defining a
stroke 
 as a pair of functions (�(t); �(t)), where �(t) is a line in
the parameter domain (u; v), and �(t) is a thickness function, which
describes the thickness used in rendering the stroke at every param-
eter value t. Furthermore, we define the apparent tone of an image
in the neighborhood of a given point in image space (x; y) to be the
ratio of the amount of ink deposited in that neighborhood to its area.
If the point (x; y) happens to lie on a stroke, the apparent tone can
also be expressed as the ratio �=d, where � is the thickness of the
stroke and d is its image-space separation from adjacent strokes.

With these definitions, the controlled-density hatching problem can
be formally stated as follows.

Given:

� A parametric surface � : (u; v) 7! (xw; yw; zw), which maps
points in the parameter domain (u; v) to points in world
space (xw; yw; zw);

� a perspective viewing transformation V : (xw; yw; zw) 7!
(x; y), which maps (visible) points in world space to points in
image space (x; y);

� a hatching direction h = (hu; hv) in the parameter domain;
and

� a target tone function T (x; y).

Find: A set of strokes 
i = (�i; �i), with lines �i in the parame-
ter domain running parallel to the hatching direction h, such that
the apparent tone of mapping the strokes through M = V � �
is T (x; y).

1For this work, we consider only surfaces with a global parameteriza-
tion, such as B-spline surfaces, NURBS, and surfaces of revolution. Ideas
for generalizing to a broader class of surfaces, such as patch-based surfaces
and smoothly-shaded polygonal meshes, are discussed in Section 5.



Figure 1 Controlled-density hatching for a simple 2-dimensional
transformationM : (u; v) 7! (u; v+v � exp(sin(u))). Rendering
isoparametric curves with constant thickness results in an image with
varying tones (left). We adjust the thickness of the strokes in order to
keep the “apparent tone” constant (right).

The key step in solving this problem will be to determine exactly
how the images of two parallel lines in the parameter domain con-
verge and diverge when seen in image space.2 In particular, let �i(t)
and �i+1(s) be two parallel lines that are d units apart in the param-
eter domain, and let �0i(t) and �0i+1(s) be their images, under M,
in image space. We would like to know the distance d0 between the
two image-space curves as a function of t. Once we have this dis-
tance function d0(t), we can use it to adjust the thickness and spacing
of the strokes to compensate for any spreading or compression.

A simple closed-form expression for the distance between the two
curves �0i(t) and �0i+1(s) does not exist in general, so we seek to
approximate it. We begin by writing the mapping M as two scalar-
valued functions

M(u; v) � (X(u; v); Y (u; v))

To approximate the behavior of M in a small neighborhood about
(u; v) we consider the Jacobian matrix

J(u; v) =
h

Xu Xv

Yu Yv

i

where Xu; Xv and Yu; Yv are the partial derivatives of X and Y
with respect to u and v respectively. The Jacobian matrix J is a lin-
ear transformation, which can be thought of as a Taylor expansion of
M in the neighborhood of (u; v) truncated to the first-order terms.
Under J , the two parallel lines �i and �i+1 in parameter space map
to parallel lines, denoted by J(�i) and J(�i+1), in image space.

To estimate how much the curves �0i and �0i+1 diverge, we look at
the ratio �i of the distance d0i between the lines J(�i) and J(�i+1)
in image space, and the distance di between the lines �i and �i+1
in the parameter domain. If the line �i is given by the implicit-form
coefficients ha; b; ci, then the ratio �i is given by (see Appendix A):

�i =
d0i
di

=

r
(XuYv �XvYu)2 (a2 + b2)

(aYv � bYu)2 + (bXu � aXv)
2

(1)

The ratio �i(t) is a scalar-valued function that approximates how the
distance between strokes is altered by the mapping M. We call �i

2Note that the degree to which strokes in image space converge or diverge
is dictated not only by the parametric surface, but also by the final projection
to image space.
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Figure 2 Controlled-density hatching for a perspective view of a
sphere. Again, rendering isoparametric curves with constant thick-
ness results in an image with varying tones (left). Using varying
stroke thicknesses keeps the “apparent tone” constant (right).

the stretching factor ofM. When �i is large, the lines spread apart;
when �i is small, they compress together. The maximum stretching
factor �

i
= sup

t
(�i(t)) taken along the line �i plays a special role:

given two lines �i and �i+1 offset by the distance d, it allows us to
evaluate the maximum spacing di

0

= �
i
d between the two corre-

sponding strokes.

We are now ready to generate strokes so as to achieve the target tone
T (x; y). We will do this in four steps.

First, we must decide what the maximum distance d0 between two
strokes in the image should be. This value is dictated by the max-
imum (or darkest) tone T that must be achieved anywhere on the
surface, and the maximum stroke thickness � set by the user. To guar-
antee that T can be achieved, given �, the strokes need to be spaced
by no more than d0 = �=T on the image plane.

Second, we note that because the stretching factor �i is derived from
a first-order approximation of M, it is accurate only for very small
steps in parameter space. In practice, however, the strokes must be
spread apart by a comparatively large distance. To work around this
problem, we use a stepping technique. To spread two strokes by a
distance d0, we take a series of small step of size � in parameter
space, updating the stretching factor after each step. Stepping starts
from the line �i, and proceeds until the accumulated image-space
distance, given by

P
j
�
j
�, equals or exceeds d0. In our implemen-

tation, � is set to 0:01d0=�
i
.

Third, we must modulate the thickness of the strokes to accurately
render the tone T (x; y). Two factors influence the thickness of the
stroke �0i(t): the actual image-space distance d0(t) between the
strokes, and the tone to be achieved. The stepping algorithm devised
in the first step guarantees that two adjacent strokes are spread by at
most d0. However, the actual spacing d0(t) can be smaller. To com-
pensate for this variation, the thickness of stroke �0i must be scaled
by the ratio d0(t)=d0 � �i(t)=�i. Finally, to take into account the
varying tone, we also scale the stroke thickness by the ratioT (t)=T .
In summary, the thickness of �0i(t) is given by

�i(t) =
T (t)

T

�i(t)

�
i

�

Finally, we introduce an additional feature to create more interesting
hatching. Although the strokes generated by the method above ac-
curately render the target tone, the thicknesses of all the strokes vary
simultaneously. A more appealing effect is achieved when short and
long strokes are interspersed, as depicted on the right side of Fig-
ure 1. This effect is created by introducing an additional spreading



factor�, set by the user. The initial strokes are spread by the distance
�d0 instead of d0. The extra gaps created are then recursively filled
with additional filler strokes.

The expression for the thickness �i(t) of a filler stroke 
i at level `
of recursion is slightly more complicated. To derive it, we first note
that the image-space distance between two adjacent strokes at level `
of recursion is given by

d0`(t) =
� d

2`

�i(t)

�
i

=
��

2`T

�i(t)

�
i

(2)

With this style of recursive hatching, we would like to achieve the
target tone by using the thickest possible strokes, before introducing
a filler stroke at level `. Consequently, if �i(t) > 0 for some t, then
the thickness of the neighboring strokes at recursion level `�1 is �.
The contribution to the tone from these strokes is T`�1 = �=d0`�1,
while stroke 
i contributes T` = �i(t)=d

0

`. Finally, the overall target
tone to achieve is T (t) = T`�1 + T` = �=d0`�1 + �=d`. Substitut-
ing for d0`�1 and d0` using equation (2), and noting that �i(t) cannot
exceed �, yields

�i(t) = min

�
�;

�
�T (t)

2`T

�i(t)

�
i

�
1

2

�
�

�

The recursion stops when �i(t) � 0 everywhere along the stroke.
The minimum thickness of a stroke is dictated either by the pixel
size, or by a constant set by the user. However, “visually thinner”
sizes can still be obtained by using dashed strokes.

The hatching textures of all the figures shown in this paper were gen-
erated using this recursive algorithm. Typically, � ranges between 2
and 8.

3.2 The planar map

As discussed in Section 1.2, a key data structure of the pen-and-ink
illustration system for polyhedral models was a planar map of all
the visible surfaces and shadow polygons. This planar map was con-
structed with the help of 2D and 3D BSP trees [22]. Recent results
introduced by Naylor and Rogers [15] show how to build 2D BSP
trees with Bézier curves. However, it is not clear how this work can
be generalized to handle scenes containing parametrically defined
curved surfaces. It is also not clear how Chin and Feiner’s BSP-
tree-based shadow algorithm can be generalized in the presence of
curved surfaces. For these reasons, we devised a method for com-
puting the planar map and the shadows that does not rely on BSP
trees.

3.2.1 Constructing the planar map

The planar map data structure partitions the image plane into homo-
geneous regions so that each region corresponds to a single visible
object in the scene. In our new algorithm, the planar map is con-
structed in three main phases.

In the first phase, we tessellate every object in the scene into a polyg-
onal mesh. The resolution of the tessellation is chosen so as to yield
a reasonably-accurate approximation to the object. Our implemen-
tation uses a fixed resolution set by the user, although a flatness cri-
terion could also be used.

In the second phase, we compute higher-resolution piecewise-linear
approximations for all the silhouette curves of the meshed objects.
This step is required to obtain smooth and accurate silhouettes with-
out requiring an unduly fine tessellation. Our technique is very simi-
lar to the one developed for hidden-curve removal by Elber and Co-
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hen [6], only it operates on a polygonal mesh, rather than on a para-
metric surface directly. To find the silhouette curves, we first iden-
tify the mesh edges that span the silhouette. To do this, we examine
the normal vectors at the two endpoints of every edge. If the projec-
tions of the normals on the viewing direction are in opposite direc-
tions, then the edge spans the silhouette. In this case, the two mesh
faces adjoining the edge are subdivided, and the process is repeated.
Our implementation performs a fixed number of subdivisions in this
manner. Finally, the silhouette curve is further refined, using a root-
finding method to evaluate a more precise silhouette point along
each remaining mesh edge that spans the silhouette. A piecewise-
linear silhouette curve is then constructed by connecting all of the
silhouette points in the mesh.

In the third and final phase, we construct the planar map itself. Ini-
tially, the planar map consists of a single region corresponding to
the entire display area. Each mesh face is then inserted into the pla-
nar map in turn. First, the face is projected onto the view plane, and
its edges are merged with those of the planar map. Next, we resolve
occlusions between the new face and the existing faces in the planar
map that are covered by the new face. Our implementation currently
assumes non-intersecting objects; thus, for each existing face in the
planar map, we merely need to determine whether the existing face
or the face being inserted is closer to the viewer. We do this by sum-
ming up the distance from the view point to the 3D point correspond-
ing to each edge midpoint. Whichever face yields the smallest sum
is considered to be closer to the viewer. If the face being inserted is
closer, the planar map region is updated to reflect the new informa-
tion.

Once all objects have been inserted into the planar map, each result-
ing region corresponds to a single visible 3D face in the mesh de-
composition. In our implementation, we maintain a link from each
region to its 3D face. In turn, each 3D mesh maintains a link to
its original object. These links are used by the procedural stroke
textures to compute a variety of information, as described in Sec-
tion 3.3.

3.2.2 Robustness issues

A common problem in geometric algorithms, and one to which our
planar map construction algorithm is certainly not immune, is that
it is not always easy to maintain consistency between the topolog-
ical and geometric information in the data structure when impre-
cise computations like floating-point arithmetic are used [10, 19]. To
build the planar map robustly, we use a method inspired by the work
of Gangnet et al. [8]. Notably, we restrict all the line endpoints to

o1

o3

o2

o4

s1

s3

s2

Figure 3 Several cases must be considered when tracing outlines
(edges labeled o1 to o4), and clipping strokes (edges labeled s1

to s3).



Figure 4 Creating a pen-and-ink illustration. The steps involved are not so different from those required to create an attractive photorealistic
rendering. From left to right: constant-density hatching; smooth shading with rough strokes, using a single light source; smooth shading with
straighter, longer strokes adjusted to depict glass; introducing environment mapping; and, finally, the same image after adjusting the reflection
coefficients, shown at full size in Figure 5.
lie on an integer lattice, and we use infinite-precision rational arith-
metic to compute all intersections exactly. Because the planar map
stores only line segments, the number of bits required for the inter-
mediate computations is bounded. In particular, we use 14-bit inte-
gers to represent the lattice points, which allows all intersections to
be stored using 32-bit rational integer numbers. This choice limits
us to a resolution of about 800 dots per inch over a 10 � 10-inch
image-space area. (See Winkenbach [21] for more details.)

3.3 Using the planar map

As in the original polyhedral renderer, the planar map is used for
rendering outline edges. In this work, the planar map is additionally
used for clipping individual strokes to visible regions. Here we con-
sider how these two processes can be implemented for curved sur-
faces.

3.3.1 Outlining

Object outlines are constructed from edges of the planar map. With
curved surfaces, four types of planar map edges can give rise to an
outline edge (see Figure 3):

� Case o1: an edge that bounds two regions belonging to different
objects. The texture for such an outline edge is taken from the ob-
ject closest to the view point. In the case of two abutting surfaces,
this choice is arbitrary.

� Case o2: an edge that bounds two regions belonging to the same
object, but whose corresponding 3D mesh faces have opposite
orientations.

� Case o3: an edge that bounds two regions belonging to the same
object and having the same orientation, but at different depths.

� Case o4: an edge that arises from a C1 discontinuity on the sur-
face.

An outline path is assembled by appending as many adjacent outline
edges as possible. The darkness of the stroke along an outline edge
is affected by two factors:

� The tone value on the surface — letting an outline edge fade away
in regions of highlight reinforces the quality of the shading.

� The contrast between two adjoining surfaces — if the tone differ-
ence between the two adjacent surfaces is small, a darker outline
is required to mark the boundary.

The degree to which these criteria affect the outline is selectable by
the user.
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3.3.2 Generating stroke paths

Both outline and texture strokes are initially constructed as 3D poly-
line curves, called stroke paths. Each stroke path vertex stores sev-
eral items of information, including the parametric coordinate, the
corresponding 3D position, and the tone evaluated on the surface at
that point. The number of vertices in the path is adjusted using a sub-
division algorithm, with the goal of accurately capturing not only the
shape of the stroke, but also any variation in tone. The latter is par-
ticularly important when texture, bump, or environment maps with
small features are present.

3.3.3 Clipping stroke paths

Using the planar map, we generate strokes for all surfaces that are at
least partially visible. However, these strokes can potentially extend
into invisible regions. To clip the strokes in the presence of curved
surfaces, we break each stroke at the silhouette points, yielding seg-
ments that either face toward or away from the view point. Each of
these segments is then projected onto the planar map and clipped.
(If the object being rendered is a solid, then back-facing stroke seg-
ments can be rejected immediately.) The clipping process starts by
locating the planar map region in which the stroke’s first vertex lies.
The visibility of the stroke is then tested for every planar map edge
that the stroke crosses. When the visibility changes, a root-finding
method is used to find the intersection between the path and the pla-
nar map edge. The intersection point is then added to the path, break-
ing it into smaller segments.

Several tests are used to determine the visibility of a stroke segment
within a face of the planar map. They are, in order of application (see
Figure 3):

1. Same object — the planar map face must be linked to the same
3D object that the stroke is covering (eliminates s1).

2. Same orientation — the planar map face must be linked to a 3D
mesh face that has the same orientation (back-facing or front-
facing) with respect to the view point as the 3D surface point
along the stroke path (eliminates s2).

3. Same depth — the 3D location of the path vertex must be close to
the corresponding 3D location of the 3D mesh face. This last test
is required since, with free-form surfaces, several different points
on the same surface can project to the same 2D point (elimi-
nates s3).

If all three tests succeed, the segment is visible and marked as such.
Only the visible segments of each stroke are drawn.



Figure 5 Glass bottle. An environment map is used to give the illu-
sion of a reflected surrounding.

3.4 Shadows

In the polygonal version of the renderer, polygons were split along
shadow boundaries before being inserted into the 2D BSP tree.
Hence, the different partitions in the BSP-tree would distinguish be-
tween regions that were in and out of shadow. The shadows were
then rendered with strokes clipped to the shadow regions. Unfortu-
nately, with curved surfaces, shadow boundaries are much more dif-
ficult to generate. Thus, we decided to use a simpler two-pass clip-
ping approach inspired by Williams [20] instead.

Shadow strokes are generated for all the visible surfaces. To clip
these strokes, we build an additional shadow planar map with re-
spect to the light source, in addition to the view planar map. Each
shadow stroke is first clipped against the view planar map, just like
all other strokes. In a second pass, the remaining visible shadow
strokes are clipped against the shadow planar map; this time, how-
ever, just the portions of the strokes that are not visible from the light
source (and therefore in shadow) are preserved and rendered.

Note that the view planar map and the shadow planar map lie in dis-
tinct 2D spaces. Therefore, each visible stroke left after the first clip-
ping pass must be re-mapped to the shadow planar map space before
the second clipping pass can take place.

4 Results

In this section, we demonstrate the rendering algorithms with sev-
eral examples. The rendering times for these figures can be found in
Table 1.

All of the examples in this paper were created using an iterative de-
sign process, not unlike the procedure typically used in creating an
attractive photorealistic rendering. First, we generally set up one or
more light sources, then adjust the quality of the strokes, then add
any texture maps, and finally adjust the various reflection-model pa-
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Figure 6 Wooden bucket. The bucket is modeled as a single surface
of revolution. The planks are created by a prioritized stroke texture.

rameters until an appealing illustration is achieved. Figure 4 illus-
trates this process for the glass bottle, shown at full size in Figure 5.

4.1 Texture mapping

Controlled-density hatching allows “fine grain” control over the
tone of a pen-and-ink illustration. With this new capability, we can
use traditional texture mapping techniques to vary the tone on the
surface of an object. For example, Figure 5 uses an environment map
to enhance the illusion of the glass material. Figure 6 uses a bump
map to perturb the shading on the wooden planks. Figure 7 uses an
ordinary texture map to create the geometric pattern on the bowl;
it also uses a bump map to emboss the word “MILK” and create a
slightly irregular surface on the jug.

4.2 Other texture styles

The basic hatching algorithm described in this paper can be used to
generate many other texture styles:

� Wood. The wood texture shown in Figure 6 uses a variety of
strokes, much like the prioritized stroke texture for wood used in
the polygonal version of the renderer. Thin wavy strokes are used
to convey wood grain, while longer strokes of varying thickness
delineate the gaps between the wood boards.

� Stippling. Figures 7 and 8 show the use of stippling to build tone
values. To create the stipples, we generate hatching strokes as de-
scribed previously. However, the resulting stroke paths are not
rendered directly; instead, they serve as curves along which the
stipples are drawn. The spacing between the stipple marks along
the stroke path is randomized. In addition, the stipple marks are
also offset from the path by a small random distance.

� Crosshatching. Figure 7 also shows the use of crosshatching —
using more than one hatching direction — to create dark shadow
tones. Crosshatching is also used on the cane in Figure 8 .



Figure 7 Ceramic jug and bowl. A traditional (image-based) texture map is used to model the details on the bowl as well as the stains on the
table. A bump map is used to emboss the word “MILK” on the jug, and to give some irregular variation to its surface.
Fig Model Planar map Rendering

5 Glass bottle 74 46

6 Wooden bucket 21 44

7 Jug and bowl 126 128

8 Hat and cane 230 120

Table 1 Rendering times for various illustrations presented in this
paper. All times are in seconds, and were measured on a Power Mac
7100/80.

5 Conclusion and future work

In this paper, we have introduced the concept of controlled-density
hatching, which allows strokes to be generated so as to simultane-
ously convey tone, texture, and shape for parametric surfaces. Be-
cause controlled-density hatching provides “fine grain” control of
the tone of an illustration, we were also able to use traditional tex-
ture mapping techniques to extend the range of effects that can be
achieved with pen-and-ink rendering. We have also described an al-
gorithm to construct a planar map from parametric surfaces, and we
have shown how this planar map can be used for outlining and stroke
clipping, in addition to resolving occlusions. Finally, we have de-
scribed a simple method to render shadows with strokes.

Perhaps the biggest limitation of this work is that it deals only with
surfaces possessing a global parameterization. Unfortunately, many
commonly used surface representations, such as patch-based sur-
faces, implicit surfaces, subdivision surfaces, and smoothly-shaded
polygonal meshes, do not have this property. One possible solution
is to parameterize such surfaces, using for example the methods of
Maillot et al. [14] or Pedersen [16]. Another alternative is to do away
with the parameterization altogether, and to instead generate strokes
along directions that are more intrinsic to the geometry of the surface
— for example, along directions of principal curvature [2]. This ap-
proach may also be suitable for mapping stroke textures on polygo-
nal meshes, since surface curvature can still be approximated in this
case [14].
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A Deriving the stretching factor

To derive the expression for the stretching factor �i, given in equa-
tion (1), we first note that the linear transformation J maps points
(u; v) in parameter space to points (x; y) in image space by

J
h

u
v

i
=

h
x
y

i
(3)

Next, we write the implicit equations for line�i and its image J(�i),
using the implicit-form coefficients ha; b; ci for �i, and ha0; b0; c0i
for J(�i):

[a b]
h

u
v

i
+ c = [a0 b0]

h
x
y

i
+ c0 = 0 (4)

Combining equations (3) and (4), we readily establish that

[a0 b0] = [a b]J�1

c0 = c (5)

The distance d between two parallel lines with implicit-form coeffi-
cients ha; b; ci and ha; b; c+ �i is d = �=

p
a2 + b2. The stretching

factor �i is given by the inverse ratio of the distance di between the
lines �i and �i+1, and the distance d0i between their images J(�i)
and J(�i+1):

�i =
d0i
di

=
�=
p

(a0)2 + (b0)2

�=
p
a2 + b2

=

r
(XuYv �XvYu)2 (a2 + b2)

(aYv � bYu)2 + (bXu � aXv)
2


