Material representation, Reflectance, BRDFs

Local illumination models

- A single point light source
- Linear combination for several light sources
- $I(a+b)=I(a)+I(b)$
$-I(s . a)=s . I(a)$
- No interactions between objects
- No shadows, no reflections
- Computing color independently for each pixel

BRDF: Bi-directional Reflectance Distribution Function

- 4D Function: $\mathrm{f}\left(\theta, \phi, \theta_{0}, \phi_{0}\right)$, tells how the light is reaching a point is reflected

BRDF

- Ratio between incoming light and outgoing light
- Complete description of the behaviour of the material at each point, for every incoming and outgoing direction

BRDF - Isotropic vs. anisotropic?

- Isotropic
- Rotationally invariant (3D)
- True for many materials
- One dimension less
- Anisotropic
- Depends on the angle of rotation around the surface normal

BRDF - Representation

- Constraints:
- Storage space
- Accurate representation of the properties of a material
- Fast and easy sampling
- 2 solutions:
- Explicit storage of measured data
- Approximation through an analytical model

BRDF - Acquisition

- Acquisition system: gonioreflectometer

BRDF - Database

- MERL dataset
- 100 measured materials

BRDF- Analytical models

- Empirical
- Lambert, Phong, Blinn, Ward, Lafortune
- Can be combined for increased realism
- Easy to use
- Physically based models
- Torrance-Sparrow, Cook-Torrance, Kajiya...
- Need information on the material (roughness...)

Ideal diffuse reflection

- Diffuse reflexion
- Object reflecting light uniformly in all directions
- Lambertian surfaces (mate: chalk, paper)
- Intensity at one point: only depends on the angle between incoming light and surface normal
- Uniform BRDF

Diffuse reflection

$I=\rho_{d} \cos \theta$

Ambiant light

- Trick for better visual realism
- No relation with physical realism
- Light independent from position:

$$
I=\rho_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}
$$

- Very simple model:
- no visible 3D effect
- useful to hide some defects

Ambiant light

increasing ρ_{a}

Diffuse + ambiant

Oren-Nayar model [1993]

- rough diffuse materials

Photograph

Diffuse model

Oren-Nayar

Ideal specular reflection

- Specular reflection
- Smooth, shiny surfaces (mirrors, metals)
- Snell / Descartes law
- Light reaching a point reflected in the direction having the same angle with the normal
- BRDF: Dirac distribution

Non-ideal specular reflection

- Problem: ideal specular reflection limited
- Useful for indirect lighting
- Less so for direct lighting with point light sources
- Assumes perfectly smooth surfaces
- Phong model
- Fresnel coefficients

Phong model [1975]

- Intensity varying with angle α between viewing direction V and reflected direction R
(R symmetric of L w.r.t. the normal)

$$
I(P)=\rho_{s} \quad L \quad \cos ^{s} \alpha
$$

- $s=$ roughness: ∞ (1024) for a mirror, $2-3$ for rough surface
- $\cos \alpha=\mathrm{V} . \mathrm{R}$

$$
\begin{aligned}
-\mathrm{R} & =2(\cos \theta) \mathrm{N}-\mathrm{L} \\
& =2(\mathrm{~N} \cdot \mathrm{~L}) \mathrm{N}-\mathrm{L}
\end{aligned}
$$

Phong model

85\% Diffuse
25% Specular, exponent $=15$
85\% Diffuse
25% Specular, exponent $=15$

70\% Diffuse
40\% Specular, exponent $=15$

Blinn-Phong model [1977]

- Uses the half-vector: $\quad \mathbf{h}=\frac{\mathbf{l}+\mathbf{v}}{\|\mathbf{l}+\mathbf{v}\|}$
- Reflected light is now: $I=\rho_{s}(\cos \theta)^{n}=\rho_{s}(\mathbf{h} \bullet \mathbf{n})^{n}$

Blinn-Phong or Phong

- Visually very similar
- assuming you use $n=4 s$
- slight differences for grazing directions
- symmetric lobes for Phong, asymmetric for Blinn
- Blinn-Phong easier to code (?) (YMAMV)

Lafortune Model

- "Improved Phong"
- "Perturb" the reflected direction vector

$$
K=\rho_{s} \cdot\left[C_{x y}\left(l_{x} v_{x}+l_{y} v_{y}\right)+C_{z} l_{z} v_{z}\right]^{n}
$$

$$
\mathbf{l}=\left(l_{x}, l_{y}, l_{z}\right)
$$

$$
\mathbf{v}=\left(v_{x}, v_{y}, v_{z}\right)
$$

Fresnel coefficients

Experiment by Lafortune, Foo, Torrance \& Greenberg (Siggraph 1997)

Fresnel Coefficients

- Reflection coefficients varying with viewing angle
- Interface between 2 materials, with different index:
- complex (metals)
- real (transparent / dielectric)

Fresnel Coefficients

- Depends on material index, polarization
- Complicated formula

$$
R_{p}=\left(\frac{n_{1} \cos \theta_{t}-n_{2} \cos \theta_{i}}{n_{1} \cos \theta_{t}+n_{2} \cos \theta_{i}}\right)^{2} \quad R_{s}=\left(\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{t}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{t}}\right)^{2}
$$

- Schlick Approximation:

$$
\begin{aligned}
& F=F_{0}+\left(1-F_{0}\right)(1-\cos \theta)^{5} \\
& \cos \theta=(\mathbf{v} \bullet \mathbf{h})
\end{aligned}
$$

Cook-Torrance-Sparrow model [1967]

- Surface is made of micro-facets
- small specular mirrors
- Light reaching a facet:
- Reflected, masked, shadowed
- Statystical analysis, depending on micro-facets orientation probability distribution
- A bit more complex. Good approximation.

Cook-Torrance-Sparrow Model [1967]

- Product of 3 terms
- Fresnel coefficient (F)
- Distribution of facets orientation (D)
- Masking and shadowing (G)

$$
K=\frac{\rho_{s}}{\pi} \frac{D G}{(N \cdot L)(N \cdot V)} \operatorname{Fresnel}\left(F_{0}, V \cdot H\right)
$$

A gaussian distribution!

$$
G=\min \left\{1, \frac{2(N \cdot H)(N \cdot V)}{(V \cdot H)}, \frac{2(N \cdot H)(N \cdot L)}{(V \cdot H)}\right\} \text { and } D=\frac{1}{m^{2} \cos } \bar{\delta} e^{-[(t a n \delta) / m]^{2}}
$$

Cook-Torrance-Sparrow Model [1967]

Cook-Torrance-Sparrow Model [1967]

Acquired data

Cook-Torrance model

Cook-Torrance-Sparrow Model [1967]

Acquired data

Cook-Torrance model

Cook-Torrance-Sparrow Model [1967]

Acquired data

Cook-Torrance, 2 lobes

Spatially varying

- Map an image on the object surface = change BRDF parameters at every point
- Texture mapping

BRDF only

Textured

Spatially varying

- BTF : Bidirectional Texture Function
- 6D : 2D in space +4 D for the BRDF
- Acquisition, compression and editing complex

BTF

Volumetric variations

- BSSRDF : Bidirectional surface scattering reflectance distribution function
- 8D function
- Subsurface Scattering

Volumetric variations

- BSSRDF : Bidirectional surface scattering reflectance distribution function

BRDF

BSSRDF

Volumetric variations

- BSSRDF : Bidirectional surface scattering reflectance distribution function

BRDF

BSSRDF

