Material representation, Reflectance, BRDFs

Local illumination models

- A single point light source
- Linear combination for several light sources
 - I(a+b) = I(a)+I(b)
 - I(s . a) = s . I(a)
- No interactions between objects
 - No shadows, no reflections
- Computing color independently for each pixel

BRDF: Bi-directional Reflectance Distribution Function

▶ 4D Function: $f(\theta, \phi, \theta_0, \phi_0)$, tells how the light is reaching a point is reflected

BRDF

- Ratio between incoming light and outgoing light
- Complete description of the behaviour of the material at each point, for every incoming and outgoing direction

BRDF – Isotropic vs. anisotropic?

Isotropic

- Rotationally invariant (3D)
- True for many materials
- One dimension less

Anisotropic

 Depends on the angle of rotation around the surface normal

BRDF - Representation

Constraints:

- Storage space
- Accurate representation of the properties of a material
- Fast and easy sampling
- ▶ 2 solutions:
 - Explicit storage of measured data
 - Approximation through an analytical model

BRDF - Acquisition

Acquisition system: gonioreflectometer

http://www.graphics.cornell.edu/~westin/

BRDF - Database

- MERL dataset
 - 100 measured materials

BRDF- Analytical models

Empirical

- Lambert, Phong, Blinn, Ward, Lafortune
- Can be combined for increased realism
- Easy to use

Physically based models

- Torrance-Sparrow, Cook-Torrance, Kajiya...
- Need information on the material (roughness...)

Ideal diffuse reflection

- Diffuse reflexion
 - Object reflecting light uniformly in all directions

- Lambertian surfaces (mate: chalk, paper)
 - Intensity at one point: only depends on the angle between incoming light and surface normal
- Uniform BRDF

Diffuse reflection

increasing ρ_d

$$I = \rho_d \cos \theta$$

Ambiant light

- Trick for better visual realism
- No relation with physical realism
- Light independent from position:

$$I = \rho_a I_a$$

- Very simple model:
 - no visible 3D effect
 - useful to hide some defects

Ambiant light

increasing ρ_a

Diffuse + ambiant

increasing ρ_d

Oren-Nayar model [1993]

rough diffuse materials

Photograph

Diffuse model

Oren-Nayar

Ideal specular reflection

- Specular reflection
 - Smooth, shiny surfaces (mirrors, metals)
- Snell / Descartes law
 - Light reaching a point reflected in the direction having the same angle with the normal
- BRDF: Dirac distribution

Non-ideal specular reflection

- Problem: ideal specular reflection limited
 - Useful for indirect lighting
 - Less so for direct lighting with point light sources
 - Assumes perfectly smooth surfaces
- Phong model
- Fresnel coefficients

Phong model [1975]

 Intensity varying with angle α between viewing direction V and reflected direction R

(R symmetric of L w.r.t. the normal)

$$I(P) = \rho_s L \cos^s \alpha$$

- s = roughness: ∞ (1024) for a mirror, 2–3 for rough surface
- $-\cos \alpha = V . R$
- = R = 2(cosθ) N-L = 2(N . L) N-L

Phong model

Blinn-Phong model [1977]

- Uses the half-vector: $\mathbf{h} = \frac{\mathbf{l} + \mathbf{v}}{\|\mathbf{l} + \mathbf{v}\|}$
- Reflected light is now: $I = \rho_s (\cos \theta)^n = \rho_s (\mathbf{h} \cdot \mathbf{n})^n$

Blinn-Phong or Phong

- Visually very similar
 - assuming you use n = 4s
 - slight differences for grazing directions
 - symmetric lobes for Phong, asymmetric for Blinn
- Blinn-Phong easier to code (?) (YMAMV)

Lafortune Model

- "Improved Phong"
- "Perturb" the reflected direction vector

$$K = \rho_s \cdot [C_{xy}(l_x v_x + l_y v_y) + C_z l_z v_z]^n$$

$$\mathbf{l} = (l_x, l_y, l_z)$$

$$\mathbf{v} = (v_x, v_y, v_z)$$

Fresnel coefficients

Experiment by Lafortune, Foo, Torrance & Greenberg (Siggraph 1997)

Fresnel Coefficients

- Reflection coefficients varying with viewing angle
- Interface between 2 materials, with different index:
 - complex (metals)
 - real (transparent / dielectric)

Fresnel Coefficients

- Depends on material index, polarization
- Complicated formula

$$R_p = \left(\frac{n_1 \cos \theta_t - n_2 \cos \theta_i}{n_1 \cos \theta_t + n_2 \cos \theta_i}\right)^2 \qquad R_s = \left(\frac{n_1 \cos \theta_i - n_2 \cos \theta_t}{n_1 \cos \theta_i + n_2 \cos \theta_t}\right)^2$$

Schlick Approximation:

$$F = F_0 + (1 - F_0)(1 - \cos \theta)^5$$

$$\cos \theta = (\mathbf{v} \cdot \mathbf{h})$$

- Surface is made of micro-facets
 - small specular mirrors
- Light reaching a facet:
 - Reflected, masked, shadowed
 - Statystical analysis, depending on micro-facets orientation probability distribution
 - A bit more complex. Good approximation.

- Product of 3 terms
 - Fresnel coefficient (F)
 - Distribution of facets orientation (D)
 - Masking and shadowing (G)

$$K = \frac{\rho_s}{\pi} \frac{DG}{(N \cdot L)(N \cdot V)} Fresnel(F_0, V \cdot H)$$

A gaussian distribution!

$$G = min\{1, \frac{2(N \cdot H)(N \cdot V)}{(V \cdot H)}, \frac{2(N \cdot H)(N \cdot L)}{(V \cdot H)}\} \text{ and } D = \frac{1}{m^2 \cos^2 \delta} e^{-[(tan\delta)/m]^2}$$

Acquired data

Phong model

Acquired data

Cook-Torrance model

Acquired data

Cook-Torrance model

Acquired data

Cook-Torrance, 2 lobes

Spatially varying

- Map an image on the object surface
 - = change BRDF parameters at every point
- Texture mapping

BRDF only

Textured

Spatially varying

- ▶ BTF : Bidirectional Texture Function
 - 6D : 2D in space + 4D for the BRDF
 - Acquisition, compression and editing complex

Texture

BTF

Volumetric variations

- BSSRDF: Bidirectional surface scattering reflectance distribution function
 - 8D function
 - Subsurface Scattering

Ravi Ramamoorthi

Volumetric variations

 BSSRDF: Bidirectional surface scattering reflectance distribution function

BRDF BSSRDF

Volumetric variations

 BSSRDF: Bidirectional surface scattering reflectance distribution function

BRDF BSSRDF

Henrik Wann Jensen, 2001