Ray-tracing

Ray-tracing

- Ray casting, ray tracing: rays sent from view point towards the scene.
- One ray for every pixel.
- Pixel color depends on illumination at the first surface intersected by the ray
- Using local illumination models

Extension

Three new rays are generated: refracted ray, reflected ray, shadow ray

Ray-tree

- Soft shadows
 - Several shadow rays for each extended light source

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel

2 rayons

3 rayons

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
- Motion blur
 - Several rays through time

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
- Motion blur
 - Several rays through time
- Depth of field
 - Several rays per pixel through the lens

- Soft shadows
 - Several shadow rays for each extended light source
- Anti-aliasing
 - Several rays per pixel
- Glossy reflections
 - Several reflected rays
- Motion blur
 - Several rays through time
- Depth of field
 - Several rays per pixel through the lens

Ray-scene intersection

- Ray-sphere: point-line distance.
- Ray-cylinder: line-line distance.
- Ray-plane: line-plane intersection
- ▶ Ray-polygon:
 - line-plane intersection.
 - test whether intersection point is in polygon:
 - project onto xy plane, check inside 2D polygon.

Ray-scene intersection

- ▶ 99 % of the time is spent doing intersections.
- Need for accelerations:
 - bounding volumes,
 - uniform grids (voxels),
 - octrees,
 - BSP-trees,
 - problem specific accelerations;

Bounding volumes

▶ Intersection with a bounding volume Early rejection

Bounding volumes

BVH: Bounding Volume Hierarchy

Uniform grid

Adaptive grid: Octree

Question. 3 mn with your neighbors

- ▶ Compare 3 accelerations structures:
 - Bounding volumes
 - Uniform grid
 - Octree

Comparison

- ▶ Bounding volume:
 - long initial step, fast requests.
- Uniform Grid:
 - fast initial step, fast requests... if proper resolution.
- Octrees:
 - fast and simple initial step, longer requests.

Ray-tracing: advantages

- Slow, but no extra charge for:
 - hidden surface removal,
 - shadows,
 - transparency,
 - texture-mapping (including procedural).
- Inter-reflexions between objects,
- Any graphics primitives,
- Global illumination model.

Ray-tracing: issues

- Limited to Snell-Descartes:
 - all objects are metallic.
- Tree limited to a certain depth:
 - complex objects may be a problem (diamonds, cristal glass)
- Extension: Monte-Carlo Ray-Tracing
 - shoots several rays. slow, but nice.