
Hierarchical Instantiation for Radiosity
Cyril Soler

Max Planck Institut für Informatik

François Sillion
iMAGIS-GRAVIR/IMAG-INRIA

Abstract.
We present the concept of hierarchical instantiation for radiosity. This new
method enables an efficient, yet accurate determination of the illumination in
very large scenes, where similar objects are replaced by instances of the same
element. Instances are equipped with suitable radiative properties and are used
to replace large amounts of geometry at multiple levels of the scene hierarchy. In
essence, our algorithm replaces a single very large hierarchical radiosity problem
by a collection of hierarchical radiosity problems within small sets of objects at a
time, at several hierarchical levels. We prove the applicability of our method on
architectural scenes with replicated geometry. However we reach the best time
and memory gains on plant models thanks to the high degree of self-similarity in
such kinds of scenes. This allows us to compute lighting simulations on scenes
including a very large number of polygons in a short time on machines with lim-
ited memory.

1 Introduction

In scenes that include a large number of input geometric primitives, hierarchical radiosity
algorithms are rapidly limited by their memory and computation costs.

We propose a new radiosity algorithm based on the concept of hierarchical instanti-
ation, which allows this calculation to be performed while dramatically reducing the re-
sources needed as compared to previous approaches. The hierarchical instantiation idea
takes advantage of the inherent repetition and structure in a scene, while allowing full dif-
ferentiation in terms of lighting conditions.

The notion of instantiation refers to the replacement of similar parts of the complete
geometrical model by copies of a single geometry. This is commonly used in ray tracing
algorithms, where only a geometric transformation needs to be stored with each instance,
all ray intersections being computed against the unique geometrical model common to all
instances. In a more general approach, the approximate self-similarity in large models lets
us use instances to replace parts of the geometry that are largely, although not exactly,
identical. At first sight, instantiation does not seem really suitable for radiosity calculations
because geometrically similar objects may receive totally different illumination. There-
fore our algorithm cleanly separates the representation of the light distribution from the
geometry management. Thanks to a well-chosen computation mechanism and associated
traversal of the hierarchical structure, only a fraction of the total geometry ever needs to
be present in memory, making the algorithm practical even for very large models such as
plants. Instantiation also appears to be a promising approach to radiosity simulations in
very complex architectural scenes involving some repetition.

The remainder of the paper is organized as follows: we first review existing approaches
for lighting simulation with instantiation. Section 3 presents the hierarchical instantiation
algorithm in detail, and analyzes the expected benefits of the approach. In Section 4 we
propose a complete set of solutions to the different problems arising in the radiosity simula-

1

tion using hierarchical instantiation. Section 5 presents our results, including the validation
of the hierarchical instantiation algorithm and the evaluation of its performance.

2 Previous work

The general principle ofinstantiationis to replace the geometric definition of several identi-
cal objects by pointers to a unique original object and the geometric transformation needed
to map the original to the instanced object.

Ray-tracing instanced objects simply involves transforming the ray back to the coor-
dinate system of the original object before computing the intersection. Complex models
can be ray traced with little memory, since only the geometric representations of original
objects must be kept in memory [SB87, KK86]. Applied to plants [Har92] or to fractal ob-
jects [BW94] the gain is even more interesting, because the self similarity of such models
appears at different levels of their hierarchical representation.

When the objects to be instanced are not exactly identical to a given original object (as
is the case for most scenes), approximate instantiation can be used to save memory while
ensuring a similar visible result. This has been used to render images of giant outdoor
scenes [DHL+98].

Instancing objects for radiosity simulation is a much more difficult problem, because
radiosity operates on a representation of illumination traditionally attached to geometry
(typically in the form of a mesh). Ouhyoung [OCL96] defined the concept ofre-usable
radiosity objectsto share precomputed geometric information between instances of a given
object, in order to accelerate the computation of visibility and of the form factors involving
these objects. However, the representation of radiosity inside different instances of the
same object can not be shared, because it not only depends on internal characteristics of
the object but also on its position in the scene. Besides, when dealing with approximate
instantiation the geometry of the original can not simply be used as a support geometry for
the instances. Therefore this method requires the complete model of all similar objects to
be present in memory.

An exception to this rule exists, however, for the case where the radiosity of the instance
is not that much influenced by its position in the scene, and it can therefore be considered
constant. This is the case for thecanned light sourcesobjects [HKSS98], for which an
inside radiosity solution is precomputed and stored with the model. Such an object can be
further instanced and used in any radiosity solution.

3 Hierarchical Instantiation Radiosity

3.1 Using instances in radiosity

Radiosity algorithms compute an explicit representation of illumination, typically associ-
ated with the geometry in the form of a mesh. Copies of a given object each have their
own, unique illumination. Instantiation for radiosity is therefore more elaborate than for
simpler rendering techniques, since it should differentiate between the geometry (that is
easily shared) and the illumination (that varies from one instance to another).

Hierarchical radiosity algorithms, especially those using clustering, try to avoid con-
sidering the inherent complexity of energy exchanges by computing transfers at fairly high
levels of a scene hierarchy. However a complete traversal of the scene is needed to estimate
the energy emitted or received by a cluster with any accuracy [SAG94]. The use of meta-
objects, or impostors, has been proposed to avoid this descent in the hierarchy, and instead
perform the computation with fairly large (and simple) objects [RPV93, OCL96].

This is a very good idea, resulting in important savings, but in order to guarantee a
sufficient accuracy these meta-objects should be equipped with very precise radiometric
information: they should respond appropriately (i.e. just like their actual contents would

2

do) to incident light, and allow accurate determination of light transmitted through their
contents.

An instance should therefore be able to participate in radiosity calculations without ac-
cessing its geometric content. In general, for each instance, this requires the knowledge of
(a) an outgoing radiance distribution [SDS95], (b) a bidirectional scattering phase function
to convert incoming energy into outgoing radiance, and (c) a transmittance function. The
phase function of an instanciable object can be sampled by placing an external light source
for a number of incoming directions and recording the outgoing radiance after solving for
a global energy balance inside its geometry. To compute the outgoing distribution of light
of an instance due to incoming energy along a link, we multiply its phase function for the
incident direction by the irradiance along the link. For that reason, the phase function can
also be called thereflectancefunction of the instance, as an extension to its usual definition
on simple surfaces.

Obviously, these characteristics are quite costly to handle, both in terms of computation
time and in terms of storage. Meta-objects are therefore especially useful when a sufficient
number of such identical objects are present in the scene, since all instances share the same
intrinsic characteristics. Phase and transmittance functions are precomputed and stored,
and can be accessed whenever needed, to instance a part of the geometry of the scene that
corresponds to it.

In summary, instantiation is a key element in making the accurate characterization of
simplified objects viable. It is realized by identifying objects (in fact, clusters) that have
a similar behavior in terms of light emission, reflection and transmission. Note that the
radiometric behavior of an instance can therefore be an approximation of reality, just like
its geometry is approximately that of the original. A flexible trade-off is possible between
the accuracy of the representation and its compactness, largely controlled by the degree of
auto-similarity in the model.

After a radiosity solution is obtained at the level of the instances, the illumination of
objectsinside the instances must still be determined. This involves a local hierarchical
radiosity solution in which the contained geometry is subjected to the incident illumination
computed for the considered instance. A major potential difficulty is that the contents
of the instance might still be too complex to allow a hierarchical radiosity calculation.
The hierarchical instantiation algorithm described below provides an elegant and efficient
solution to this problem.

3.2 Hierarchical Instantiation

Our aim is to ensure that hierarchical radiosity calculations are always performed on a
fairly small scene. To this end, we explore the possibility of creating instances at various
hierarchical levels. This is possible whenever different scales of similarity exist in the
model. (Plant models are the perfect example of such a property; we will therefore illustrate
the idea with the case of plants in the results section).

Structure of the hierarchy. We want to reveal the redundancy present at different scales
of the scene hierarchy. This information can easily be extracted from the architecture of
plants for instance and we anticipate that it will be possible to obtain it in large-scale ar-
chitectural scenes as well. If the cluster hierarchy made frominstantiableclusters still has
a large branching factor its efficiency toward hierarchical radiosity must be improved by
inserting new levels of (non instantiable) clusters into the hierarchy. This can be done using
a constrained clusterizer [HDSD99].

As a result, the entire scene can be described as a hierarchy of clusters, in which in-
stantiable clusters appear at various levels (possibly one included in the other). However,
during any call to the computation of alocal solution using hierarchical radiosity, the part
of the hierarchy that is considered always consists of a cluster hierarchy whose leaves are
either non opened instances or polygons.

3

Hierarchical solution. The scene hierarchy is first loaded into memory with a depth lim-
ited to the first level of instances. Then it is processed by the hierarchical radiosity solver,
which involves iteratively establishing (refining) links between clusters and propagating
energy until convergence. Refinement of the links is limited to the level of instances,
since their geometry is not available at this time. However the resulting solution is still
much more accurate than if we had performed a hierarchical radiosity solution on the en-
tire scene while limiting the link refinement to the level of the instances. This is due to
the fairly precise representation of each instance’s “phase function” or general reflectance
property, which is precomputed and embodies the effect of light propagation and scattering
inside the instance. In addition, it should be noted that no self-links are established on
instances, because their reflectance function already accounts for internal light scattering.

We then traverse the scene hierarchy, and focus on each instance encountered in the
following manner: (a) form in a new hierarchy by loading down to the next instantiation
level the geometry contained in the instance, (b) compute a local radiosity solution inside
the new hierarchy (with a recursive application of the algorithm) and (c) destroy the new
hierarchy and replace it back with the instance. Therefore we essentially perform a depth-
first traversal of the scene, always focusing on a given hierarchy of instances.

When we reach a level with no instances below, the algorithm is equivalent to hierar-
chical radiosity with clustering, and a complete solution is available for the current branch
of the scene hierarchy, taking into account contributions from the entire scene.

The solution for the current portion of the hierarchy is accessible at this stage only,
because its supporting geometry will be deleted when closing the instance. We thus render
the corresponding polygons into an off-screen buffer (or output the results to a file), thereby
progressively forming the image during the traversal of the scene.

Opening instances. We detail here the operations involved in the “local” solution com-
puted when opening an instance in the recursive traversal. This process is illustrated in
Figure 1. On the left we see a solution computed at a given level. Oval shapes represent
objects or clusters, while rectangles represent instances. Links are indicated by arrows, and
have been created at varying levels of the cluster hierarchy.

When the lower-right instance is opened, we build a hierarchy with its contents, as
shown on the right-hand side of the figure. In order to properly account for all incoming
light, we create copies of all links that previously arrived on the instance (marked using
dashed lines on the figure) and attach them to the root of the new hierarchy. We also add
a self-link to the root if no self link exist on any parent levels, to account for all internal
exchanges [Sil95].

We can then apply the solution procedure outlined above, that is first solve for radios-
ity, then traverse the hierarchy to open instances and recurse. The right side of Figure 1
illustrates the radiosity solution, in the opened level: Dashed links correspond to links that
previously arrived at the instance level, and have been refined. Internal links issued from
the refinement of the added self link are also represented. The recursion would then con-
tinue into the smaller instances before returning to the left-hand situation and opening the
other instance.

Note that refinement is constrained in that only elements belonging to the considered
hierarchy may be subdivided (either as emitters or receivers). Gathering and push/pull
operations are also applied to the local hierarchy only, essentially treating all elements
external to this hierarchy as fixed light sources.

Discussion. Our algorithm essentially gains by neglecting the correlation between objects
lying in different instances at the same hierarchical level. For two such sibling instances,
no link can ever be created between one object from each, because the contents of both in-
stances are never simultaneously present in memory. This ensures that every local solution
only involves a small number of objects, at the expense of a small approximation. For the

4

Cluster
 or object

Instance

Fig. 1. Two consecutive stages of the recursive computation of the radiosity solution in the hierarchy
of instances.

same reason, a complete solution is never present in memory, although every part of the
global solution is available at some stage of the calculation. This explains why any results
such as images or radiosity values written to a file must be output during the calculation as
mentioned earlier.

The same result could be achieved in a normal radiosity algorithm, by preventing the
refinement of an emitter if it is an “instantiable” object different from the receiver. However
the global accuracy would be lower unless the emitter is already refined enough to obtain
a high-quality representation of its internal light distribution. Since the phase functions of
the original instances are pre-computed and stored, more computation time can be invested
in this process than typically done in a hierarchical radiosity computation. For instance the
effects of internal visibility in emitting clusters, which are usually not computed for cost
reasons [SD95], are accounted for in our general reflectance functions (See Section 4).

The pseudo-code on Figure 2 summarizes the algorithm.

main()
OpenOutputFile()
OpenInstance(root)
CloseOutputFile()

HierarchicalInstantiation (clusterH)
if IsAnInstance(H)

OpenInstance(H)
if IsACluster(H)

ForAllChildren (g,G)
HierarchicalInstantiation (g)

if IsAPolygon(H)
Render(H)

OpenInstance(instanceH)
cluster G =LoadNextLevel(H)
ReplaceInHierarchy(H,G)
TransferLinks (H,G)

ComputeLocalSolution(G)

HierarchicalInstantiation (G)

DeleteLinks(G)
ReplaceInHierarchy(G,H)
DeleteG

Fig. 2. Pseudo code for the radiosity instantiation algorithm. The genericRenderprocedure replaces
any output of the information as rendering the polygon to an off-screen buffer, or saving its radiosity
to a file.

3.3 Cost considerations

Simple recursion arguments allow us to evaluate the cost of our algorithm in terms of
storage and computation cost. Let us denote the number of instantiation levels byk, the

5

number of elements at each instantiation level byN, and the number of these elements that
are instances byp. This model is very simple because it assumes a uniform branching
factor among all levels of the hierarchy of instances, and a uniform proportion of instances
and polygons at each level of the scene hierarchy. Using these characteristics, the total
number of polygons in the scene is :

n= (N� p)(1+ p+ :::+ pk�1
)+ pkN = O(pkN) (1)

Gain in memory. Let us denote the memory size of a polygon, an instance and an original
(instanced) object byε, I ando.

Assumingr original objects are used to create thep instances, the memory footprint of
the scene at the top level of calculation is :

Minst(1) = (N� p)ε+ pI+ ro

Since the algorithm only loads the geometry of the branch of the hierarchy it is descending
into, the maximum memory requirement is reached at the bottom of the hierarchy, where it
is :

Minst(k) = k(N� p)ε+kpI+kro (2)

For the ideal case of a well balanced hierarchy of instances, the memory cost is thus loga-
rithmic in terms of the total number of polygons in the scene. In any case, it is much less
than theO(nε) memory size of the model itself.

As an example taken from our implementation and real data, considero= 1;100 bytes
(an original object holds two sampled directional functions at 528 bytes each),ε = 150
bytes (this rather large size accounts for geometry, radiometric and subdivision informa-
tion) andI = 200 bytes (in our implementation, instances are also clusters and thus contain
inherited information). For the tree presented in Figure 5, we haven= 119;000,k = 4,
r = 5,N� 30 andp� 8. The expected memory size given by Expression 2 is 48 kb, which
is much less thann ε = 15;085Kb, the expected size of the entire scene.

Although these numbers do not translate directly into required memory sizes, because
of the missing constants and various fixed costs, we will see in Section 5 that a large mem-
ory reduction is observed, the gain increasing with scene complexity. It actually becomes
feasible to simulate very large scenes that simply could not be treated by previous methods.

Since the accuracy threshold does not change when recursively computing the local
solutions, the maximum number of links in memory can be estimated by the number of
links that contribute to the illumination of a leaf element in a classical hierarchical radiosity
solution on the entire scene, multiplied by the number of leaf elements at the lowest level,
e.g O(N logn). This is much less than theO(nlogn) links of the normal clustering radiosity
method.

In scenes with limited instantiation depth (e.g k is small) the logarithmic equivalent
does not hold anymore. In the worst case, the gain in memory is the number of instances
times the ratio between the memory cost of an instance and the actual geometry.

Computation cost. We consider that a hierarchical radiosity solution in a scene ofn ele-
ments equipped with a well balanced hierarchy can be performed inO(nlogn) time.

LetC(i) denote the cost of our algorithm for solving leveli, then we get :

C(i) = N log(N)+ pC(i�1) and C(1) = N log(N)

The cost is thus :
C(k) = N log(N)

�
1+ p+ :::+ pk

�

= O(pkN log(N))

6

Considering thatn= O(pkN), the valueC(k) appears to be equivalent toO(nlog(N)),
which is very close to the cost of the classical hierarchical radiosity algorithm. However,
our algorithm is faster in practice, as will be discussed in the results section.

4 Implementation

Precomputation and use of instance information. In the general case, we use a di-
rectional distribution to represent the transmittance information of an instance. We pre-
compute it using graphics hardware, by rendering the concerned object off-screen in each
direction sample and recording the percentage of the bounding box of the object that is not
masked by the object itself. In some cases, the transmittance information can preferably
be accessed through a simplified geometric representation of the real geometry, especially
if the instances replace very simple objects. This representation can still be approximative
since we allow the instantiation of not necessarily identical objects.

We compute the phase function by performing a series of accurate lighting simulations
for directional incoming illuminations, and recording the distribution of outgoing light.
Each lighting simulation is done using hierarchical radiosity. We record the outgoing light
by rendering the illuminated object in an off-screen buffer and measuring the average val-
ues of pixels in the resulting image, so as to obtain an average radiance value per unit of
projected area. One advantage of this technique is to account for self-occlusion for the out-
going light as well as for the incoming light in the objects. However, if instances are used
to replace very complex geometry this approach can be costly. In such a case, a recursive
application of the Hierarchical Instantiation algorithm with limited depth could be used to
improve the computation time of the phase functions. An other possibility is to use generic
phase functions, which works well for plant models.

To compute the contribution of an emitting instance to the radiosity of an element in a
given directionθ, we then multiply its emmited radiance by the projected areaa(θ) of its
geometry in the direction of the receiving element. This projected area is easily deduced
from the value of the directional transmittanceτ(θ), and the projected areaA(θ) of the
instance’s bounding box:

a(θ) = (1� τ(θ))A(θ)

Visibility computation. Computing visibility using exact geometric information is only
viable for clusters that contain a small number of polygons. Therefore the geometric infor-
mation of simple objects can be kept with the original cluster, for use by all the instances. At
higher levels, a formulation based on extinction coefficients [Sil95] works well for isotropic
clusters, like the ones we find on plant models. For all other cases, a more complex rep-
resentation of visibility can be needed depending on the geometric configuration of the
energy transfer it is involved in. This can be achieved using a simplified geometry. Indeed,
even a highly decimated mesh produces much more realistic shadows than a box equipped
with directional transmittance.

When computing the visibility through a blocker that is not an instance, the visibility is
recursively computed down to next instances or polygons.

Instantiation policy. The basic principle of instantiation requires that a sufficient number
of copies of an instantiable cluster exist in the scene to counterbalance the cost of keeping
general reflectance functions of original clusters in the scene. It should be noticed that
exact geometric similarity between objects instanced by the same original is not necessarily
needed: it is sufficient that they only have similar radiometric properties at the level of the
hierarchical radiosity solution they are involved in. After being opened, the instances are
automatically replaced by more appropriate geometry. This allows us to instance branches
of a plant for instance, whose geometry would differ in details but that still would have the

7

same global shape. In general, a more complete approach would consist in precomputing
and storing the necessary information to obtain a bound on the error for energy exchanges
that involve approximate instances, and use it to decide whether to use a different but more
appropriate original cluster to reduce the error.

Instancing at all levels of the hierarchy is not necessarily a good idea: In some cases
in which clusters are too close to each other, replacing both of them by instances would
suppress any interaction between pairs of sub-elements in these clusters. This is a common
cause of error in hierarchical radiosity algorithms. Besides, clusters that lay too close to
each others tend to be associated to poorly approximated form factors, which can cause
divergence of the algorithm when a number of them sum up to too large a value. To cor-
rect both problems, our implementation allows to skip levels of instantiation to increase
accuracy, at the expense of computation time and additional memory cost.

In our first implementation, this strategy is entirely user-defined, which is not accept-
able if we want to be able to treat complex scenes automatically. It would also be a
good idea to have the instantiation policy depend on the memory currently available by
caching instance memory: the program could be allowed to skip instantiation levels when-
ever needed provided that sufficient memory is available.

5 Results

5.1 Application to classical architectural scenes

In Figure 6 (See appendix) we present a solution on a “classical radiosity scene” of 55;000
polygons, in which all objects have been instanced (e.g24 chairs, 3 tables, 3 orchids and
4 plants. Computation times for each of the four phase functions took between 1mn and
10mn). To be able to generate correct shadows for the instances the transmittance function
is computed using a unique and shared copy of the geometry of each object. Note that shad-
ows of external geometry (including instances) on instances themselves are also correctly
generated (consider for instance the shadows on tables cast by the orchids).

The solution itself is computed in 8mn using 15MB of memory, whereas the computa-
tion time and memory cost of hierarchical radiosity is 45mn/67MB. However, it could be
possible to improve the gain in this particular scene, using a higher depth of instantiation
on the two plant models but we did not have access to their botanical structure. This raises
the question of automatically finding potential instances in a scene.

5.2 Application to plant models

Hierarchical radiosity without clustering is of little help in the case of plants, mainly be-
cause the polygons that define the models are always very small, thus raising the cost of
initial linking. Radiosity methods with clustering [SAG94, Chr95, Sil95] seem to be very
promising since they have a much smaller computation cost, but they still require consid-
ering the entire model simultaneously in order to establish links between clusters, which
becomes unpracticable for very large plants. Other calculation algorithms based on statisti-
cal or continuous approximations have been proposed [Gre89, MMKW97, Gov95], but are
ill-suited to simulations at the scale of a few plants, which is more typical in virtual reality
and computer graphics applications.

Conversely, our approach works very well because of the high degree of self similarity
inside the plant models, and because instances are able to share properties such as phase
functions. We observe indeed that phase functions for a given kind of axis (branch, whole
plant) tend to reach a “limit” as its age increases. This allows us to instantiate older axes
using the precomputed information of medium aged ones. Otherwise, precomputing the
phase function of very complex objects (like old trees) using a brute force approach can
be even longer than computing the solution for the scene itself. Finally, directional trans-

8

mittance functions work pretty well because the transmittance of such kind objects is, to a
large extent, uniform at the scale of the energy transfers.

x

z

y

(a) Small axis (b) Small branch (c) Large branch (d) phase function

Fig. 3. (a) to (c) : Axes corresponding to three different levels of possible instantiation. Each level
also corresponds to a cluster in the hierarchy that defines the tree.(d) represents the reflectance
function for the axis in(a). The two main bulbs come from the shape of the bounding box and the
smaller ones from the common orientation of the polygons in the cluster. See text also.

We import our scenes as a depth-first description of the cluster hierarchy and the geom-
etry. In the case of plants, each cluster (before constraining the hierarchy) corresponds to a
plant axis in the architectural sense [dREF+88], and contains information about the kind of
axis and its age. We use this information as a criterion of similarity between clusters that
can be instantiated. The clusters in Figure 3 represent different levels of instances used for
the images of Figures 5 and 7 (See appendix). With each of these clusters is also stored its
position and orientation in space. Whenever it is deemed possible to instantiate a cluster,
its geometric definition is skipped and replaced by an instance with the correct geometrical
transformation.

In our current implementation, phase functions only account for incoming light direc-
tion in the instances, the outgoing radiance per unit of projected area is assumed to be
uniform. This allows us to store only radiosity values on instances instead of complete
directional radiance distributions. While incurring some approximations, this allowed us
to test our algorithm in a first approach, and does not depend on any limitations of the
algorithm itself. Such a phase function is represented in Figure 3d that corresponds to the
cluster in Figure 3a.

Finally, leaves are modeled by two-sided polygons with diffuse transparency. The ra-
diosity on one side is computed as the sum of two terms: (1) the irradiance on the same
side multiplied by its reflectance, and (2) the irradiance on the other side multiplied by a
diffuse transmittance coefficient.

5.3 Comparison with hierarchical radiosity

In Figure 5 (See appendix) we compare the results given by our radiosity algorithm to
that of a hierarchical radiosity simulation with clustering, performed with the same set of
parameters but without instantiation. Three light sources are used (the 3rd one is masked
by the tree). The model of the tree is a 30-year old poplar tree (populus) consisting of
119 000 polygons. Experiments have been conducted on aSGI Origin2000computer.

Although the results seem identical at first sight, some subtle differences can be found,
that mainly concern a variation of the energy in some parts of the plant where instantiation
has been used. This is due to the fact that the radiosity stored in the instances is not direc-
tional but represented as a single value. On theright image for instance, the light arriving
from the light source on the center of the tree has been distributed behind the instance be-
cause of this approximation. As expected by our estimations, the gain is very important
(15 times less memory in this particular case), especially considering that there are fixed
memory costs (Our radiosity program requires a fixed amount of 5MB of RAM).

9

300s

450s

385s

250s

3600s

836s

(arbitrary units)Accuracy threshold

Relative error (% of the reference solution)

536s

5600s

426s

0.70.60.4 0.5 0.90.8 1

Hierarchical radiosity

Instantiation (all levels)

0

1

2

Instantiation (Every 2 levels)
Instantiation (Every 3 levels)

3

0 0.1 0.2 0.3

8

4

5

6

7

Instantiation all levels

Number of elements

Number of HR problems

80 >100

Instantiation every 3 levels

1

Instantiation every 2 levels

10

100

1000

604020

10000

Fig. 4. Left: L2 error in percentage of the maximum value of the reference solution (computed
using hierarchical radiosity) for various values of the accuracy threshold used in link refinement.
The numbers in black on the curves indicate computation times in seconds.Right: histogram of
the number of hierarchical radiosity solutions on local hierarchies with variable numbers of leaf
elements. When instancing at fewer levels, hierarchical radiosity computations tend to involve more
elements.

An important gain in computation time is also apparent (Hierarchical Instantiation is 8
times faster). Since our algorithm does not allow bidirectional refinement of energy links
between instances, it refines fewer links and computes fewer form factors. The ratio be-
tween the two numbers of links is the average number of elements an emitter is subdivided
into. This of course depends on the relative positions of the elements and on the refinement
algorithm. If the instances are not too close to each other, we can consider that our algo-
rithm is equivalent to normal refinement; for really close instances it is more approximate.
Visibility calculations are also faster with instances, since they do not require geometric
operations, instead using the stored mean transmittance value in the relevant directions.

On the left side of Figure 4 we show a comparison of the accuracy of hierarchical
radiosity and hierarchical instantiation for values of the accuracy threshold used in the
refinement of links, for the scene of Figure 5. It appears that for larger values of the
error threshold, hierarchical instantiation is much faster then hierarchical radiosity with
a better accuracy. This confirms that using phase functions that accurately account for
the internal scattering of light is more efficient than the traditional approximation used
for clusters in hierarchical radiosity. For small error thresholds hierarchical radiosity is
still more accurate than hierarchical instantiation. We believe that this is caused by the
omni-directional approximation of the reflectance functions in our current implementation,
which is confirmed by the fact that instancing fewer levels in the hierarchy only marginally
increases the accuracy. The repartition of the hierarchical radiosity solutions required by
our algorithm corresponding to each case is shown on the right side of Figure 4. It clearly
appears that when instancing all levels, only hierarchical radiosity problems with small
number of elements occur. When instancing every other level, the average number of
elements per hierarchical radiosity problem increases. Finally, when instancing every three
levels, the algorithm tends to mainly solve hierarchical radiosity problems with more than
100 leaf elements.

Figure 7 (See appendix) presents a lighting simulation in a scene of 1 210 925 input
polygons, built using poplar trees of various ages1. The simulation took 9 hours and 53
minutes to compute on aSgi-Origin 2000computer, using only 49Mb of memory. When
comparing this computation time with the one of the solution on Figure 5, it should be
noticed that the source we used here is much more complex (Each bulb contains an average
of 1 000 small polygons grouped into clusters) and thus drastically increases the number of
links in the scene. Computation time with a single polygon source is less than 2 hours.

1Models generated by the AMAPHydro software. Courtesy of Pr.Philippe de Reffye and F.Blaise, CIRAD

10

6 Conclusions and future work

We have proposed a new hierarchical instancing technique that drastically reduces the
amount of resources needed for the lighting simulation with hierarchical radiosity in scenes
with approximate geometrical redundancy. This enables for the first time the precise sim-
ulation of light in very large models, such as entire trees, with limited memory. This in-
stantiation technique essentially bridges the gap between explicit radiosity solutions and
view-dependent approaches operating on instanced geometry, allowing a precise calcula-
tion in object space with reasonable resources.

Whereas in the case of plants it appears that the phase functions from large models can
be approximated by the ones for small models, (e.gby the phase functions from instances
at lower levels in the hierarchy) this is not true in architectural scenes. Some investiga-
tion is required to search for a way to deduce phase functions of large instances without
computing a hierarchical radiosity in the entire model. We are thinking about considering
an incremental approach, where phase functions are initially considered uniform, but are
incrementally updated after opening the corresponding instance.

We have seen in the case of architectural scenes that directional transmittance func-
tions do poorly in the computation of shadows cast by the instances and we used geometry
based transmittance. Indeed, in the method we have presented, the instances are “opened”
to improve the computation of their internal light distribution only. The regions where
shadows are cast by an instance could also be considered as to be improved when opening
this instance. Therefore, a formulation of our algorithm based on the accuracy of energy
transfer along links that encounter an instance – rather than based on the accuracy of light
on approximated geometry – would form a more general approach that could also per-
mit to accurately compute shadows due to the geometry in the instances while keeping an
approximate transmittance function within the instance.

The hierarchical instantiation algorithm could perhaps be improved by detecting in-
stances with simple contents receiving a nearly uniform distribution of incoming light. In
such cases, a simple hierarchical push/pull may replace the local radiosity solution at a frac-
tion of the cost. Smarter and more generic instantiation policies could be used, especially
as we start applying these ideas to scenes with less self-similarity. The vector quantization
technique of [DHL+98], based on the difference between phase functions, should prove
particularly useful.

As could be observed in the results section, the compromise between storage require-
ments of the phase functions and the accuracy of the simulation leads to approximations in
the solution for highly refined scenes. This choice was not due to a particular restriction
of our algorithm but for the sake of simplicity for a first approach. Experiments could be
conducted on bidirectional phase functions, and the kind of phase function to use (uniform,
mono or bi-directional) could be adapted to the case of each object to be instanced. The
precise distribution of illumination computed in our method could also be used to create
high quality renderings, using a rendering step in which each leaf is subjected to the irra-
diance from links but uses a more accurate BRDF, including specular/shiny effects which
are visually important despite their limited global impact.

Finally, it is clear that this work has a direct application on physiological plant growth
simulation where the precise illumination on leaves is needed to compute the produc-
tion of vegetal matter. We are currently working on such a project in collaboration with
the LIAMA (French-Chinese Laboratory for Computer Science, Beijing, China) and the
CIRAD (International Research Center in Agronomy and Development).

Acknowledgements. This work was supported in part by the INRIA Cooperative Re-
search ProjectSOLEIL(INRIA-LIAMA-CIRAD). We wish to thank Philippe De Reffye
and Frédéric Blaise (CIRAD) for their active participation. It was also supported by the
European Union under Esprit LTR project #24944 ARCADE ”making radiosity usable”.

11

References

BW94. Ph. Bekaert and Y. D. Willems. Raytracing 3d linear graftals.Winter School of Computer
Graphics 1994, January 1994. Held in held at University of West Bohemia, Plzen, Czech
Republic, 19-20 January 1994.

Chr95. Per Henrik Christensen.Hierarchical Techniques for Glossy Global Illumination. Ph.D.
thesis, Technical Report, Department of Computer Science and Engineering, University
of Washington, Seattle, Washington, 1995.

DHL+98. Oliver Deussen, Patrick Hanrahan, Bernd Lintermann, Radomr Mech, Matt Pharr, and
Przemyslaw Prusinkiewicz. Realistic modeling and rendering of plant ecosystems.Pro-
ceedings of SIGGRAPH 98, pages 275–286, July 1998. ISBN 0-89791-999-8. Held in
Orlando, Florida.

dREF+88. Ph. de Reffye, C. Edelin, J. Franc¸on, M. Jaeger, and C. Puech. Plant models faithful
to botanical structure and development. InComputer Graphics(Proceedings of SIG-
GRAPH 88), volume 22(4), pages 151–158, 1988.

Gov95. Y. M. Govaerts.A Model of Light Scattering in Three-Dimensional Plant Canopies: A
Monte Carlo Ray Tracing Approach. PhD thesis, Departement de Physique, Universitat
Catholique de Louvain, Louvain, Belgium, 1995.

Gre89. Ned Greene. Voxel space automata: Modeling with stochastic growth processes in voxel
space.Computer Graphics (Proceedings of SIGGRAPH 89), 23(3):175–184, July 1989.
Held in Boston, Massachusetts.

Har92. J. C. Hart. The object instancing paradigm for linear fractal modeling. InProc. of the
Graphics Interface ’92, pages 224–231, Vancouver, Canada, 1992.

HDSD99. Jean-Marc Hasenfratz, Cyrille Damez, Franc¸ois Sillion, and George Drettakis. A prac-
tical analysis of clustering strategies for hierarchical radiosity. InComputer Graphics
Forum (Proc. Eurographics ’99), volume 18(3), September 1999.

HKSS98. Wolfgang Heidrich, Jan Kautz, Philipp Slusallek, and Hans-Peter Seidel. Canned light-
sources.Eurographics Rendering Workshop 1998, pages 293–300, June 1998. ISBN
3-211-83213-0. Held in Vienna, Austria.

KK86. Timothy L. Kay and James Kajiya. Ray tracing complex scenes.Computer Graphics,
20(4):269–278, August 1986.

MMKW97. Nelson Max, Curtis Mobley, Brett Keating, and En-Hua Wu. Plane-parallel radiance
transport for global illumination in vegetation. In Julie Dorsey and Phillip Slusallek,
editors,Rendering Techniques ’97 (Proceedings of the Eighth Eurographics Workshop
on Rendering), pages 239–250, New York, NY, 1997. Springer Wien. ISBN 3-211-
83001-4.

OCL96. Ming Ouhyoung, Yung-Yu Chuang, and Rung-Huei Liang. Reusable radiosity objects.
Computer Graphics Forum, 15(3):C347–C356, C483, September 1996.

RPV93. Holly Rushmeier, Charles Patterson, and Aravindan Veerasamy. Geometric simplifi-
cation for indirect illumination calculations. InProceedings Graphics Interface ’93.
Morgan Kaufmann publishers, 1993.

SAG94. Brian Smits, James Arvo, and Donald Greenberg. A Clustering Algorithm for Radiosity
in Complex Environments. InComputer Graphics Proceedings, Annual Conference
Series, 1994 (ACM SIGGRAPH ’94 Proceedings), pages 435–442, 1994.

SB87. John M. Snyder and Alan H. Barr. Ray tracing complex models containing surface
tessellations.Computer Graphics, 21(4):119–128, July 1987.

SD95. Franc¸ois Sillion and George Drettakis. Feature-Based Control of Visibility Error: A
Multiresolution Clustering Algorithm for Global Illumination. InComputer Graph-
ics Proceedings, Annual Conference Series, 1995 (ACM SIGGRAPH ’95 Proceedings),
pages 145–152, 1995.

SDS95. F. Sillion, G. Drettakis, and C. Soler. A clustering algorithm for radiance calculation in
general environments. InEurographics Rendering Workshop 1995. Eurographics, June
1995.

Sil95. Franc¸ois Sillion. A Unified Hierarchical Algorithm for Global Illumination with Scat-
tering Volumes and Object Clusters.IEEE Transactions on Visualization and Computer
Graphics, 1(3), September 1995.

H.Radiosity (119mn/123MB) H.Instantiation (14mn/8MB)

Fig. 5. Comparison between hierarchical radiosity and hierarchical instantiation

Fig. 6. Application of our algorithm to a “classical radiosity scene”.

Fig. 7. Hierarchical Instantiation on a scene of1M input polygons.9h53mn/49MB.

