Programmable Style for NPR Line Drawing

Stéphane Grabli*, Emmanuel Turquinl, Frédo Durand” and Francois X. Sillion*
'ARTIS/GRAVIR-IMAG — INRIA MIT

In the following code examples we highlight in yellow the significant lines of code, the remaining lines
consisting in declarations or use of standard mechanisms.
The built-in objects are written in blue.

Code for the Guiding Lines Style Module

We show here the python code of the style module that was used the for the “Guiding Lines” layer of
Fig. 4 in the paper.

The main aspects of this style module are the recursive split used to make strokes start and stop at

points of highest curvature and the shader that displaces the vertices of the stroke along its tangent.
The functions, predicates, shaders needed in the style module are first defined followed by the style

module itself.

zero-di nensional (0OD) Unary Predicate, returns true if the u paraneter
of the paranmeterized stroke is inside a given range.
-- inherits from UnaryPredicateOD
cl ass pyPar anet er UPOD(Unar yPr edi cat e0D) :
Builds the functor given the range
def init_ (self,pmn, pnmax):
UnaryPredicateOD. init_(self)
self._m= pmn
sel f._M = pmax
QOperator() inter is an InterfaceODlterator
def call (self, inter):
return ((inter.u()>=self. n) and (inter.u()<=self._ M)

Shader to displace stroke’'s vertices along its tangent
-- inherits from StrokeShader
cl ass pyQui di ngLi neShader (St r okeShader):
shadi ng et hod
def shade(sel f, stroke):
it = stroke.strokeVerticesBegin() ## get the first vertex
itlast = stroke.strokeVerticesEnd() ##
itlast.decrenent () ## get the last one
t <- tangent direction
t = itlast.getObject().getPoint() - it.getObject().getPoint()
| ook for the stroke m ddle vertex
itmddl e = StrokeVertexlterator(it)
while(itm ddl e. get Cbj ect (). u()<0.5):
itm ddle.increnment ()
position all the vertices along the tangent
while(it.isEnd() == 0):
it.getbject().SetPoint(itmn ddle.getObject().getPoint() \
+t*(it.getvject().u()-itni ddle.getObject().u()))
it.increment()

Shader stretch stroke at its extremties

-- inherits from StrokeShader
cl ass pyBackboneStret cher Shader (St r okeShader):
Buil ds the shader. The user specifies the desired stretching

amount | .

def __init_ (self, I):
StrokeShader. _init_ (self)
self. | =1

shadi ng net hod
def shade(sel f, stroke):
it0 = stroke.strokeVerticesBegin() ## first vertex
itl = StrokeVertexlterator(itQ) ## --
itl.increment() ## second vertex
itn = stroke.strokeVerticesEnd() ## --
itn.decrenent () ## | ast vertex
itn_1 = StrokeVertexlterator(itn) ## --
itn_1.decrenent() ## vertex n-1
get the 2D coordinates for all these vertices:
pO = it0. get Obj ect (). get Point ()
pl = itl. getObject().getPoint()
pn_1 = itn_1.get Object().getPoint()
pn = itn. get Object().getPoint()
Conpute the directions of the stroke’'s first and | ast
segnents
dl = (p0-pl).nornalize() ## first segnent
dn = (pn-pn_1).normalize() ## |ast segnent
nove the first point along the first segnment’s direction
i t0.getCbject().SetPoint(p0+dl*float(self._l))
nove the last point along the |last segnment’s direction
i tn.get Object(). SetPoint(pn+dn*float(self. 1))

g LI rrr e rr e rr i rr i
Styl e Modul e
g LI rrr i rrrrrrrr
-- selects the ViewEdge that are visible
Qperators. sel ect (QuantitativelnvisibilityUP1D(0))
-- chains using the standard chaining iterator
By default, the chaining stays in the selection.
Oper at or s. bi di recti onal Chai n(Chai nSi | houettelterator())
-- splits the chains at points of highest 2D curvature.
The chains are split until a certain length is reached.
We prevent the splitting points frombeing near extremties
Operators. recursiveSplit(
Cur vat ur e2DFOD(), ## the OD function we eval uate
pyPar anet er UPOD(0. 2, 0. 8), ## The Predicate 0D that preselects
the candidate splitting points
Not UP1D(Lengt hH gher UP1D(75)), ## The 1D predicate that tells
when to stop the recursion
2) ## The sanpling
-- list of shaders
shaders list = [
St rokeText ur eShader (" penci |l . j pg", ## pencil texture with tips
St roke. DRY_MEDI UM 1),
Const ant Col or Shader (0, 0, 0, 1), ## assigns a constant col or RGBA
Const ant Thi cknessShader (2. 0) ## assigns a constant thickness
pyGui di ngLi neShader (), ## nodifies stroke's geonetry w th
respect to its tangent
pyBackboneSt r et cher Shader (0. 2) ## stretches the stroke
]
-- creates the strokes
Qperators. create(TrueUP1D(), shaders_|i st)

Code for the External Contour Style Module

We show here the python code of the style module that was used the for the “External Contour” layer
of Fig. 4 in the paper.

The main aspects of this style module are in the chaining and in the calligraphic shader.

The functions, predicates, shaders needed in the style module are first defined followed by the style
module itself.

Assigns a calligraphic thickness to the strokes.
-- inherits from StrokeShader
cl ass pyCal li graphi cThi cknessShader (St r okeShader) :
Builds the shader. The user specifies the mn thickness m
the max thickness M the calligraphic direction V.
def _init__(self, m M V):
StrokeShader. init_ (self)
self._ m=m
self. M= M
self. V=V
sel f. _get Nornmal 2D = Nor nal 2DFOD() ##i nst anci at e
the functor that
##gets nor mal
##i nfo

shadi ng net hod
def shade(sel f, stroke):
it = stroke. strokeVerticesBegi n()
while(it.iseEnd() == 0):
gets the normal to the curve
n2d = self._getNormal 2D(it).normalize()
conpute the thickness depending on the
angl e between the nornal and the desired
calligraphic direction
t = self._m+ fabs(n2d*self._V)*(self._Mself._m
assigns the found thickness to the StrokeVertex
attribute
it.getCbject().attribute().setThickness(t/2.0,t/2.0)
it.increment()

g LI rrrrrrrrrr

Styl e Modul e
NN
-- selects the ViewEdge that are visible and external contour

Oper at ors. sel ect (AndUP1D(Quantitativel nvisibilityUPlD(0),
Ext er nal Cont our UP1D())

-- chains using the ChainPredicatelterator that takes a
one-di mensi onal predicate as argunment. This predicate
is evaluated to deci de whet her a Vi ewedge nust be included in
the chain or not. W pass a predicate that tests whether a Vi ewkEdge
is visible and is an external contour
Qper at or s. bi di recti onal Chai n(Chai nPredi cat el t er at or (

AndUP1D(Quantitativel nvisibilityUP1DX0),

Ext er nal Cont our UP1DX)))

-- list of shaders
shaders _list = [
Const ant Col or Shader (0. 2, 0. 2,0. 2,1), ## assigns a constant col or

RGBA
assigns a calligraphic
thi ckness
PyCal | i gr aphi cThi cknessShader (6, ## M n thickness
40, ## Max Thi ckness
Vec2f (1, 1), ## orientation
1) ##cl anp

-- creates the strokes
Operators. create(TrueUPL1D(), shaders_Ili st)

Code for the “not” External Contour Style Module

We show here the python code of the style module that was used the for the “not External Contour”
layer of Fig. 4 in the paper.

This style module selects the ViewEdges that are visible but not external contours and apply a
nonlinear varying thickness to the strokes.

The functions, predicates, shaders needed in the style module are first defined followed by the style
module itself.

def smoothC(a, exp):
¢ = pow(float(a), exp)*pow 2.0, exp)
return c

Assigns a Thi ckness that increases and then decreases
in a non-linear way.
-- inherits from StrokeShader
cl ass pyNonLi near Varyi ngThi cknessShader (St r okeShader) :
Buil ds the shader. The user specifies the mn thickness m
the max thickness M the exponent
def init_ (self, m M e):
StrokeShader. init_ (self)
self._ m=m
self. M= M## Mis reached in the mddle of the stroke
self. e =¢e
shadi ng et hod
def shade(sel f, stroke):
n stroke. strokeVerticesSi ze()
i 0
it = stroke. strokeVerticesBegi n()
while it.isEnd() ==
att = it.getOoject().attribute()
i f(i <float(n)/2.0):
c =float(i)/float(n)

el se:
c = float(n-i)/float(n)
c smoot hC(c, self._e)
t (1.0 - ¢)*self. M+ c * self. m
att.set Thi ckness(t/2.0, t/2.0)
i =i+l
it.increnment()

#E LI rrrr

#it Styl e Modul e
g LI rrr i rrrrrrrr
-- selects the Viewkdge that are visible and not external contour

Oper at ors. sel ect (AndUPLD(Quantitati vel nvisibilityUP1D(0),
Not UP1D(Ext er nal Cont our UP1DX)))

-- chains using the standard chaining iterator.

By default, the chaining stays in the selection.

Oper at ors. bi di recti onal Chai n(Chai nSi | houettelterator())

-- list of shaders
shaders list = [
Const ant Col or Shader (0. 2, 0. 2,0. 2, 1), ## assigns a constant col or

RGBA
pyNonLi near Var yi ngThi cknessShader (2, ## nmi n t hi ckness

10, ## max thi ckness
0.33), ## the exponent

]

-- creates the strokes
Qperators. create(TrueUP1D(), shaders_|i st)

Shader code examples

The first shader is used in Fig.12 to define the strokes wavy geometry. It basically consists in
displacing the vertices along the normal to the curve, of an amount proportional to a sinusoidal curve.

Shader to displace stroke's vertices with respect to a sinusoida
curve, whose frequency and anplitude are given as argunents.
The anplitude is actually increasing fromO to A and decreasing from
A to 0 along the curve.
-- inherits from StrokeShader
cl ass pySi nusDi spl acenent Shader (St r okeShader):
Buil ds the shader. The user specifies sinusoid anmplitude a
and frequency f.

def _init (self, f, a):
StrokeShader. _init_ (self)
self. f =f

self._a = a
sel f. _getNormal = Nornal 2DFOD() ## functor instanciation
shadi ng net hod
def shade(sel f, stroke):
it = stroke.strokeVerticesBegi n()
while it.isEnd() ==
Vv = it.getbject()## v is a StrokeVertex
we retrieve the normal n to the stroke at v
n = self. getNormal (it.castTolnterfaceODliterator())
the sinusoid anmplitude is a(u) = A(1-2|u-0.5]).
This function | ooks like that
/\ u belonging to [0, 1]
a = self. _a*(1-2*(fabs(v.u()-0.5)))
we nodul ate the anplitude by a cosinus of frequency
f, such as, for f=1, the curve spans a single
2*Pl period and di splaces the vertex along its nornal
of this anplitude
v. Set Poi nt (v. get Poi nt () +n*a*cos(sel f. _f*v.u()*2*Pl))
it.increment()

The second shader is used in this same figure (Fig.12) to define the stroke’s color variation. It linearly
varies from a first color c1 to a second color c2 as we are progressing from the first vertex toward the
middle one, and from c2 to c1, as we're leaving the middle vertex to reach the last one.

Shader to linearly interpolate between two colors. The stroke starts
with the first color, reaches the second color in its middle and ends
back with the first color
-- inherits from StrokeShader
class pyl nterpol at eCol or Shader (St r okeShader):
Builds the shader. The user specifies the two colors as
R G, B, A conponents
def _init_ (self, ri,g1,bl,al, r2,g2, b2, a2):
StrokeShader. init_ (self)
self._cl =[r1,91,bl,al] ## first color array
self._c2 =[r2,92,b2,a2] ## second col or array
shadi ng net hod

def shade(sel f, stroke):

n = stroke.strokeVerticesSize()-1

i 0

it = stroke.strokeVerticesBegi n()

while it.isgEnd() == 0:
att = it.getObject().attribute() ## we get the vertex's

attribute
The color for this vertex is defined by:
color = (1-c)cl + (c)c2 with:
c(u) = (1-2|u-0.5]), and u belongs to [0, 1]
This function | ooks |ike that
1\
c = 1-2*(fabs(float(i)/float(n)-0.5))
Sets the interpolated RGB col or
att.setColor((1-c)* self. _c1[0] + c* self. _c2[0],
(1-c)* self. _c1[1] + c* self. _c2[1],
(1-c)* self. _cl[2] + c* self._c2[2],)

Sets the interpol ated al pha conponent
att.set Al pha((1-c)* self. c1[3] + c* self. _c2[3],)
i =i+l
it.increment()

Function code examples

This example shows a zero-dimensional (0D) Function used to evaluate the norm of the gradient
vector found in the global density map at a given scale for a vertex.

0D Function to conmpute the norm of the gradient vector computed
at a given point and for a given scale in the global density map.
-- inherits from UnaryFuncti onOD
cl ass pyVi ewvapG adi ent Nor nFOD (Unar yFunct i onODDoubl e) :
Builds the functor given the scale sigm
def _init_(self,sigm):
Unar yFuncti onODDoubl e. init_(self)
self. s = sigma ## the sigma of the gaussian function
self. _step = powm(2, self._s) ## the gap between two pixels
used for conputing the
gradient at scale sigmm
Operator() — iter is an InterfaceODlterator
def call (self, iter):
p = iter.getbject().getPoint2D()
Conmpute the gradient's x conmponent by reading the gl oba
density map at scale _s
gx = ReadConpl et eVi ewapPi xel CF(sel f. _s, p.x() +sel f. _step, p y())
ReadConpl et eVi ewapPi xel CF(sel f. s, p.x()-self._step, vy())
Conmput e the gradient's x conmponent by reading the globa
density map at scale _s
gy = ReadConpl et eVi ewVapPi xel CF(sel f._s, p. x(), p-y() tsel f._step)
- ReadConpl et eVi ewapPi xel CF(sel f. s, p.x(), p-y()-self. _step)
return Vec2f(gx, gy).norm() ## returns the normof the vector

Many built-in mechanisms facilitate the definition of new elements. For instance, we provide a
standard integration mechanism that allows to easily implement a one-dimensional function from a
zero-dimensional function. In particular, we show how to define the 1D function that evaluates the
gradient intensity in the global density map at a given scale for a 1D element, from the OD function
defined above.

1D Function to conmpute the gradient intensity found in the gl obal
density map at a given scale for a 1D el enent.
-- inherits from UnaryFunctionlD
cl ass pyVi ewapG adi ent Nor n1D(Unar yFunct i on1DDoubl e) :
Builds the functor given the scale sigma, the integration
type and the sanpling to use for the OD eval uati ons.
def _init_(self,sigm, integrationType=MEAN, sanpling=2.0):
UnaryFunctionlDDouble. init_ (self, integrationType, sanpling)
sel f. _get Gradi ent Nor nOD = pyVi ewmvapG adi ent Nor n=0D(si gna)
Operator() — inter is an InterfacelD
def call (self, inter):
call to the standard integration nmechani sm
return integrateDoubl e(sel f._get Gradi ent Nor nOD,
i nter. pointsBegin(self._sanpling),
i nter.pointsend(sel f. _sanpling),
self._integration)

Use of different style sheets on the same model

Figure 1 Two different styles applied to the same plane model

Figure 2 Two different styles applied to the same camera model

Use of Information to control attributes variation

Figure 3 The lines thickness depends on the depth information. In addition, the external contour isdrawnin a
calligraphic manner.

Figure 4 Asin the previous figure, lines thickness depends on depth information. We use edges nature
information to draw crease linesin white and silhouette linesin black.

Figure5 Thelines color depends on the material color information in order to simulate a cartoon like
appearance.

Gallery of Styles obtained using our approach

Figure 6 Sketchy look achieved by making the same stroke turn several times around the object.

Figure 7 The virgin example of the paper. It illustratesin particular the use of layering to produce complex
drawings.

Figure 8 We illustrate here how the chaining operator, coupled with programmable shader alows to simulate
multiple-parameterization for strokes. On this example, notice that the color variation relieson a
parameterization covering the silhouette of the whole object, including occluded parts, to blend in a gradient way
from yellow to blue and back to yellow. Similarly, the stroke’s backbone geometry is displaced against a
sinusoid defined on this same parameterization such asits amplitude linearly increases between 0 and 0.5, and
then decreases back between 0.5 and 1. In contrast, the thickness variation is defined with respect to a
parameterization that covers each visible segment of the silhouette, as increasing between 0 and 0.5 and then
decreasing between 0.5 and 1.

Figure 9 The Stanford bunny rendered in Japanese style.

Figure 10 Two models rendered using a style sheet made of two modules: the first one draws guiding lines and
the second ones draws "finished" lines for close parts.

Figure 11 Technical rendering of aV5 engine, including lines that are hidden by only one object.

