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Figure 1: Our approach takes as input an image (left), and allows a user to manipulate its structure in order to create abstracted or enhanced
output images. Here we show a line drawing with line thickness proportional to their structural importance (middle), and a reconstruction of
color information that focuses on the bee and removes detail around it (right).

Abstract
Visual content is often better communicated by simplified or exag-
gerated images than by the “real world like” images. In this paper,
we offer a tool for creating such enhanced representations of pho-
tographs in a way consistent with the original image content. To
do so, we develop a method to identify the relevant image struc-
tures and their importance. Our approach (a) uses edges as the ba-
sic structural unit in the image, (b) proposes tools to manipulate
this structure in a flexible way, and (c) employs gradient domain
image processing techniques to reconstruct the final image from a
“cropped” gradient information. This edge-based approach to non-
photorealistic image processing is made feasible by two new tech-
niques we introduce: an addition to the Gaussian scale space theory
to compute a perceptually meaningful hierarchy of structures, and
a contrast estimation method necessary for faithful gradient-based
reconstructions. We finally present various applications that manip-
ulate image structure in different ways.

CR Categories: I.4.3 [Image Processing and Computer Vision]:
Enhancement; I.3.3 [Computer Graphics]: Picture/Image Genera-
tion;

Keywords: Visual communication, multiscale analysis, image
processing, image reconstruction.

1 Introduction
Effective visual communication is not always best achieved by
the “real-world like” images. Simplified objects or exaggerated
features can often improve perception and facilitate comprehen-
sion. This observation led researchers to investigate new non-
photorealistic image processing techniques, as in the work of De-
Carlo and Santella [2002] that explicitly aims at better conveying a

message visually by means of perceptual considerations. In partic-
ular, such an image manipulation approach offers a tool for trans-
mitting effective visual information by grabbing visual attention.

However, to modify images in a way consistent with the infor-
mation content of the image, one must first identify the relevant
structures and their importance and then ensure they are preserved
through manipulations. The main goal of this paper is precisely
to give insights into “what structure means” when we have no a
priori about semantics, and to provide the user with image ma-
nipulation tools to create enhanced or abstracted representations of
photographs in accordance with their structural information.

Taking a look at Figure 2 that represents a hand-made scientific il-
lustration, it is clear that the main subject of the image is the butter-
fly: it is depicted with many details, while plants around are more or
less suggested. However, while abstracted, secondary elements of
the image retain their look and are easily identified; in other words,
their relevant structural components are preserved through the ab-
straction process. Similarly, our approach is to provide high-level
structural information to guide user image manipulations. This is a
significant step compared to previous approaches.

Gaussian scale space theory has been developed by the computer
vision community to deal with structure identification in images
with no a priori information. This theory models the first stages of
human vision (front-end vision) and extracts features that are per-
ceptually important. A relevant structure is defined as an element
that is invariant to various viewing conditions; other elements can
be considered “accidental”, and of less importance. Out of many in-
variants in an image (edges, corners, ridges, curvatures, etc), edges
contain most of the visually important information, because the hu-
man visual system is very sensitive to contrast variations [Palmer
1999]. Moreover, an edge-based representation of images provides
a flexible and simple way of merging multi-scale information. We
therefore use edges as the structural unit in our image manipulation
and derive their importance from the scale space analysis.

Edges together with their importance form a hierarchy of structures
that can be easily manipulated by the user to reflect what is se-
mantically important to her. We then build on existing gradient do-
main manipulation techniques to reconstruct the final image from
the modified edge structure.



Figure 2: “Le Papillon” (The Butterfly), watercolor by Eric Alib-
ert. From “Leman, mon ile”, c© 2000 by Editions Slatkin. As seen
in the guidebook of scientific illustration [2003].

The major contribution of this paper is to combine these two ex-
isting techniques: scale space analysis and gradient domain im-
age editing, to provide new structure-oriented image manipulation
methods. Moreover, the successful adaptation of these techniques
to this new domain has required extending them via two specific
technical contributions. For scale space analysis, we propose a
new approach to extract image structure that identifies meaningful
edges according to their importance in the scale space. For gradi-
ent domain image manipulation, we propose a novel reconstruction
method from sparse edge fields that carefully reintroduces blur and
contrast information.

Regarding our contributions, we would like to emphasize that this
work is not about a new stylization technique. It is rather a starting
point for any subsequent stylization. However, we show applica-
tions, that differ in the way they manipulate image structure. We
provide three types of manipulation: levels-of-detail, shape sim-
plification, and importance-based line drawing. We hope that our
research will motivate the development of other applications that
take advantage of image structure.

The paper is organized in six sections. After presenting previ-
ous work (Section 2), we give quick overviews of Gaussian scale-
space image analysis and gradient domain image manipulation
(Section 3). We then present our method (Section 4) and various ap-
plications along with results (Section 5) and implementation details
(Section 6). We finally discuss limitations, and propose possible
extensions as future work (Section 7).

2 Previous work

A number of previous techniques focused on creating enhanced or
abstracted renderings from arbitrary photographs.

Generally the previous methods manipulate an image globally with-
out using the image structure [Winnemöller et al. 2006], or rely on
the user to define what is important [Wang et al. 2004; Kang et al.
2006; Wen et al. 2006]. As a result, the content either cannot be
controlled, or its control involves tedious user interactions. We are
interested in automatically extracting the relevant structural infor-
mation to enrich automatic systems or assist the user in her task.

Previous work made use of Gaussian scale space [Hertzmann 1998]
or saliency maps [Collomosse and Hall 2005; Collomosse and Hall
2003] in order to guide painterly stylizations. However, saliency
maps identify image regions that already grab visual attention in
the original image, and using them to guide stylization will only
preserve these attention-grabbing regions. In contrast, our goal is to
extract a structure that allows the user to intentionally manipulate
the image, possibly modifying its attention focus (i.e. changing
its subject, see Figure 1 - right), and hence conveying a particular
message.

DeCarlo and Santella [2002; 2004] were the first to use a meaning-
ful visual structure in photo abstraction. They use color regions as
structural units and create their hierarchy of regions from a pyra-
mid of down-sampled versions of the image. But for coarser-level
regions the shape simplifies and the borders move slightly. There
is therefore no perfect overlap between finer and coarser regions.
When mixing different levels of detail in the same image, this be-
comes problematic because one doesn’t know how to unify infor-
mation at different scales.

Bangham et al. [2003] extend DeCarlo and Santella’s work by im-
proving the region segmentation. Their region hierarchy is based
on a morphological scale-space and has the advantage of preserv-
ing region shapes. But since only the region size is considered, and
not its contrast, they tend to eliminate visually important cues that
have a high contrast but small size.

In general, multi-scale region approaches have the inconvenience of
associating a solid color to each region. This fact introduces visi-
ble color discontinuities between regions and demands to explicitly
treat color mixing when two regions merge together. The end re-
sult is a poster-like effect in the final rendering. In contrast, our
structural hierarchy is an edge-based one that allows us to avoid
the problems generated by region-based methods. In particular, our
edges are not required to be closed contours, as opposed to region
boundaries, and hence they do not create erroneous color disconti-
nuities.

Edge representation of images has been used in previous work of
course, although not with the same purpose. Elder et al. [2001]
use the edge domain to ease image editing operations (crop, delete,
paste), but have no concept of edge importance. Perez et al. [2003]
suggest using gradient information only at edge locations as input
for a Poisson solver, in order to obtain a texture flattening effect.
We improve on this method with the aim of manipulating an image
for abstraction and/or enhancement purposes by (a) giving insights
into how image structure can be manipulated, and (b) by providing
a new reconstruction method that extends [Pérez et al. 2003].

3 Background

In order to manipulate images in a structure-preserving way, our
method relies on two image processing tools: Gaussian scale space
and gradient domain image manipulation. In the following, we
give a quick overview of both tools and we provide the reasons for
choosing them for our purpose. The bottom line is that Gaussian
scale space will be responsible for extracting the structure of edges,
while gradient domain processing will be used for reconstruction.

3.1 Gaussian scale space

Scale space methods base their approach on representing the im-
age at multiple scales, ensuring that fine-scale structures are suc-
cessively suppressed and no new elements are added (the so-called
“causality property” [Koenderink 1984]).



The motivation for constructing scale-space representations origi-
nates from the basic fact that real-world objects are composed of
different structures at different scales of observation. Hence, if no
prior information is available about the image content, the state-
of-the-art approach for deriving the image structure is to use the
successive disappearance of scale features to create a hierarchy of
structures [Romeny 2003].

Gaussian scale space is the result of two different research direc-
tions: one looking for a scale-space that would fit the axiomatic
basis stating that “we know nothing about the image” and the other
searching for a model for the front-end human vision [Fischler and
Firschein 1987; Wandell 1995; Romeny 2003]. Since our purpose
is to define a human-vision-like importance measure for an image
content we have no a priori on, this scale-space fits our needs.

A scale-space is a stack of images of increasing scales. The basic
Gaussian scale space is thus a stack of images convolved by Gaus-
sian kernels of increasing variance 1. In the general case, Gaussian
derivatives of any order can be used to build the stack, allowing one
to create scale-spaces of edges, ridges, corners, laplacians, curva-
tures, etc.

Edge representations, as discontinuities in image brightness, retain
important data about objects in the image (shape, surface orienta-
tion, reflectance) [Lindeberg 1998]. We thus settle on studying the
image structures represented by a hierarchy of edges in the Gaus-
sian scale space. As edges are defined by gradient information, we
only need to convolve the original image with Gaussian derivatives
of order 1, one for each image dimension. These Gaussian deriva-
tives Gx and Gy are computed as follows:

Gx(x, y; σ) = g(y) · g′(x) and
Gy(x, y; σ) = g(x) · g′(y)

with
g(i) =

e
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where the width σ of the kernel corresponds to scale and i ∈ {x, y}.
Given an input image I , we thus build two different scale spaces:
an horizontal gradient Ix = I ⊗ Gx and a vertical gradient Iy =
I ⊗ Gy .

3.2 Gradient domain image manipulation

Many recent works introduced gradient manipulations as an effi-
cient tool for image processing. The main reason is that gradient
represents the image variations independently of the original col-
ors, allowing more flexibility in image manipulations. Handling
directly the image variations makes possible applications such as
seamless image editing [Pérez et al. 2003] and image fusion [Agar-
wala et al. 2004; Raskar et al. 2004]. Gradient domain is also an
intuitive representation for image contrast [Fattal et al. 2002].

We propose to combine the flexibility of gradient domain manipula-
tions to the high level control provided by the gradient scale space.
This allows us to seamlessly mix information from multiple scales.

Working in the gradient domain implies one can reconstruct an im-
age I from its gradient field w = (wx,wy). As a manipulated
gradient is unlikely to be conservative and integrable, a common
approach is to compute an estimation of the image whose gradient
field best fits w in a least-square minimization sense:

arg min
I

∫

Ω

(∇I − w)2dΩ

1For numerical stability, one usually starts with a variance σ0 = 1

This estimation corresponds to the unique solution of the Poisson
equation ∆I = divw, where ∆ and div are the Laplace and diver-
gence operators [Pérez et al. 2003; Fattal et al. 2002].

4 Our approach
Figure 3 illustrates our approach: we first apply Gaussian scale-
space analysis to the input image I to get gradient values at multiple
scales (Ix, Iy)σ; then we manipulate this rich information in a way
that preserves the structure of the image, giving rise to a gradient
field w = (wx,wy); finally, the output image O is built from w

using Poisson reconstruction. When using a color image as input,
we use only its luminance during the multi-scale analysis.

I O(Ix,Iy)
σ

(wx,wy)

S S*

Scale space
analysis

Poisson
reconstruction

Gradient
reconstruction

Edge
manipulations

Structure
extraction

Structure-preserving
manipulation

Figure 3: Overview of our method.

Our structure-preserving manipulation represents the heart of the
approach and is composed of three steps:

1. Structure extraction: starting from the raw multi-scale gra-
dient values, we extract the image structure S corresponding
to the edges, their importance and profile.

2. Edge manipulations: We then use the structure S as a high-
level control for user-defined image manipulations, and output
a manipulated structure S∗.

3. Gradient reconstruction: We finally reconstruct a gradient
field from the set of manipulated edges with their profile.

In the following section we mainly present the two technical steps
of the method: structure extraction and gradient reconstruction.
Several edge manipulation techniques are presented in Section 5.

4.1 Structure extraction

4.1.1 Edge extraction

From the first-order Gaussian derivative scale spaces, we want to
build a hierarchy of edges holding structural importance. Before
defining what we mean by “structural importance”, we first extract
edges at all the available scales in order to get the richest possible
information. For this task we use a Canny edge detector [Canny
1986]: it is a state-of-the-art edge detection method that processes
the Gaussian derivative information at each scale to give thin, bi-
nary edges. Its main quality resides in using hysteresis thresholding
that results in long connected paths and avoids small noisy edges
(see Figure 4).

After applying the Canny detector, we are left with a multi-scale
binary mask Cσ that indicates at each scale the edges locations.
Figure 5 illustrates such a typical edge scale-space for a simple 1D
example. Due to the nature of Gaussian scale-space, three differ-
ent cases can occur: (a) an edge exists and suddenly drops off at a
higher scale; (b) two edges are coming toward each other and col-
lapse at a higher scale; (c) some “blurry” edges only appear at a
higher scale. To simplify further computations, we “drag” edges
corresponding to case (c) down to the minimum scale and note C∗

σ

the resulting multiscale edge mask.



(a) (b) (c) (d) (e)

Figure 4: Edge importance. (a) The input image. (b-d) Canny edges at increasing scales. (e) The lifetime measure reflects the importance of
edges: “older” edges correspond to more stable and important structures.

(a) (b) (c)

x

σ

Figure 5: Three different events in a 1D Gaussian scale-space: (a)
an edge drops off at a high scale; (b) two edges collapse ; (c) a
blurry edge is created. In the last case, we drag the edge down to
the finest scale for convenience.

4.1.2 Edge importance

As shown in Figure 5, there is a great deal of coherence along the
scale dimension in the multi-scale edge representation. The main
idea behind scale-space techniques is to try to extract this coherent
deep structure, by linking edges at different scales. In particular,
because of the causality property of Gaussian scale-space, an edge
that disappears at a given scale will not reappear at a higher scale;
hence an important measure of structure along scale is lifetime, as
edges that live longer will correspond to more stable structures.

Unfortunately, extracting an edge lifetime is not trivial, since edges
move in Gaussian scale-space (this corresponds to Figure 5 case
(b) ). This motivated edge focusing techniques, that track edges
at increasing scales. In this paper, we take an alternative approach
which revealed simpler to implement: instead of considering each
pixel p belonging to an edge, we consider its projected point Pσ(p)
onto the closest edge at scale σ (we use a distance field for this
purpose). We can then define the membership of any pixel mσ(p)
as the binary function that indicates whether p can be considered to
belong to an edge at scale σ:

mσ(p) =

{
1 if ||Pσ(p) − p|| < Tσ

0 otherwise

The choice of the threshold distance Tσ is essential to get a good ap-
proximation for our membership function. Bergholm [1987] proved
that the edge shifting is less than a pixel when the scale σ varies by
less than 0.5. Therefore, we increase our σ values by ∆σ = 0.4 at
each scale and use Tσ = σ/∆σ. This approach is similar in spirit
to the morphological linking method of Papari et al. [2007].

Finally, using membership for linking purpose, we compute the
lifetime L(p) at each edge pixel p in the finest scale by summing
up membership values. Considering the successive scale values
σi, i ∈ 1..N , where N is the size of our scale-space stack, we
write lifetime as:

L(p) = arg min
i

{σi|mσi
(p) = 0}

This can be seen as a simpler, easier-to-manipulate version of Lin-
deberg edge strength measure [Lindeberg 1998]. We can now use
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Figure 6: Best scale estimation. Top: 1D edges blurred with
{σi} = {5, 10, 15}. Bottom: normalized gradient magnitude scale
space proposed by Lindeberg. The best-scale measures (the local
maxima) are at the {σi} used for blurring, hence they represent
well each edge profile.

lifetime as a measure of structural importance to manipulate edges
in a structure-preserving way, as shown in Section 5.

4.1.3 Edge profile

In the previous section, we mainly relied on edge locations and their
persistence along scale. Another concern is to deal with their pro-
file (contrast value and degree of blur) . In this paper, as in pre-
vious work [Lindeberg 1998; Elder and Goldberg 2001], we rely
on a simple assumption: the profile of an edge gradient is mod-
eled as the convolution of a Dirac (its location and contrast) with a
spatially varying Gaussian kernel (its blur). For instance, in a pho-
tograph with depth-of-field, out-of-focus edges are blurry (with a
wide profile) while in-focus edges are sharp (with a thin profile).

Our second measure of structure then consists, for each edge, in
finding the best scale that locally corresponds to its blur. This is
also the scale where we measure the contrast.

The best scale search is another form of deep structure that has
been studied by Lindeberg [1998]. Following his approach, we first
compute a normalized gradient magnitude scale-space by ||∇I|| =√

σ(I2
x + I2

y). The best scale B(p) at an edge pixel p is then
identified as the one which gives the first local maxima along the
scale axis in this normalized gradient magnitude stack. But as with
lifetime computation, we need to link “moving edges” at differ-
ent scales using the projection operator Pσ again: ||∇I(p)|| =
||∇I(Pσi

(p))||. Figure 6 shows how best scales can be well es-
timated for edges of increasing blur.

We are now able to ”re-blur” the edges using the best scale. More-
over, we will also make use of this measure to find a correct contrast
in order to get edge profiles back into the output image.



(a) (b) (c) (d) (e)
Figure 7: Gradient reconstruction. (a) Input image. (b) Reconstructed image using only the original gradient values at edge positions. (c)
Reconstructed image with histogram equalization. Note the quantization artefacts. (d) Reconstructed image using contrast correction. Note
that blurry edges become sharp if the profile is not taken into account. (e) Full reconstruction using contrast correction and re-blurring.

4.2 Edge manipulations

The multi-scale Canny edges, together with their lifetime and best
scale finally constitute the structure S = {C∗

σ, L, B} we extracted
from the input image. This structure can be manipulated in various
ways depending on the application (see Section 5). The main idea is
to select a subset E of the multi-scale Canny edges C∗

σ according to
lifetime L. After manipulation, we are thus left with a new, simpler
structure S∗ = {E, B}.

4.3 Gradient reconstruction

We wish to reconstruct the corresponding image by solving a Pois-
son equation, i.e. we want to build a vector field w that corresponds
to our new edges.

We propose to use the scale space information to estimate the orig-
inal gradient profiles and correctly reproduce the contrast and blur
of the input image. However, taking the original gradient values
at edge locations as suggested by Perez et al. [2003] results in a
gradient field that does not capture the whole original contrast, nor
the original blur (Figure 7, (a) and (b)). This is because we only
consider the central value of the profile, loosing all its surrounding
informations.

A simple solution to the contrast problem would be to apply a his-
togram equalization on the reconstructed image to match the orig-
inal contrast. However the very low dynamic range of the recon-
structed image leads to strong quantization artifacts (Figure 7(c)).

We thus need to take into account our knowledge of edge profiles
to compute the correct contrast. Our model of an edge represents
blurry edges that appear in the input image I as the convolution of
a step function H by a 2D Gaussian kernel GB , where B is the
local best scale. When we measure Ix (resp. Iy) at scale B on edge
locations, we get the following contrast values:

Ix = H ⊗ GB ⊗ ∂GB

∂x
= H ⊗ ∂GB2

∂x
=

∂H

∂x
⊗ GB2

with B2 =
√

2B2. However, to recover the original contrast value
of the profile, we are precisely interested in the value of ∂H

∂x
. This

corresponds to the deconvolution of Ix (resp. Iy) by GB2
. Unfortu-

nately, deconvolution is known as an ill-posed problem, particularly
sensitive to noise and quantization [Romeny 2003]. To avoid this
problem, we propose to simplify our model for the sake of contrast
correction: we replace the 2D Gaussian derivative by a 1D Gaus-
sian derivative G̃x = g′(x). This way, we can derive an analytical
solution for the correction problem (see appendix): for each edge
pixel p, we only need to multiply the gradient value found in Ix

(resp. Iy) by 2B(p)
√

π. This correction gives a final contrast close
to the original one, and we find that our approximation works well
in practice, with no visible artefacts (see Figure 7(d)).

(a) (b)

(c) (d)

Figure 8: Detail removal: (a) original image, and (b-d) several
levels-of-detail automatically generated by our method.

Finally, even if using edge locations and correcting their contrast
does give a convincing result, blurry edges become sharp in the
reconstructed image. Therefore, we also re-blur the edges, as seen
in Figure 7(e). This process remains optional as the sharp result
provides an interesting cartoon style.

5 Applications

Most of the image manipulations presented in this paper can be seen
as variations of recently proposed methods that take advantage of
the flexibility of the gradient domain. Our contribution is to use the
high-level structural information provided by our approach to guide
these gradient manipulations.

5.1 Detail removal

We use the lifetime information as a threshold value to seamlessly
remove details while keeping important structures. Such image
editing operations are similar to the seamless cut and paste opera-
tions proposed by Perez et al. [2003] and Elder et al. [2001], except
that we provide a high level control to the user, who has only to
select the desired level of detail (Figure 8).

5.2 Multi-scale shape abstraction

We propose a shape abstraction method that adapts the level of ab-
straction to the scale of the features in order to preserve the in-
formative content of the picture. In practice, we select for each
edge its last available version in the scale space using lifetime. As



Figure 9: Shape abstraction: (a) original image, and (b) our
shape abstraction result. Notice how the thin details are kept, while
shapes of bigger objects are abstracted (e.g. the poles).

shapes become more and more smoothed along scales due to the
Gaussian filter, relevant structures will have increasingly rounded
shapes while details will keep their original silhouettes.

In opposition to previous approaches [DeCarlo and Santella 2002]
that remove texture details and abstract shapes at the same time,
our approach selects for each edge (including edges belonging to
texture details or other small elements) the shape of its last scale.
Hence, our approach still keeps most of the meaningful structural
information, while simplifying its shape, as seen in Figure 9.

This application can be seen as a fusion of multi-scale images, simi-
lar in spirit to other image fusion methods like the ones of Agarwala
et al. [2004] and Raskar et al. [2004].

5.3 Line drawing

The edge lifetime information offers a powerful high-level param-
eter for any line drawing algorithm. Figure 10 presents the render-
ing of vectorized edges with a different width to enhance important
structures from details. Figure 1 (middle) also shows an example of
this application.

5.4 Local control

In order to offer a local control to the user, each image manipulation
can be weighted by a gray-level map indicating the desired amount
of abstraction (Figure 12). This mechanism is essential to be able
to focus on a given zone of the input image, and efficiently grabs
visual attention. We take advantage of the Poisson reconstruction
to obtain seamless transitions between regions of different weight.

6 Implementation

In our approach, we clearly did not focus on performance, but
rather on how to extract and use image structure: our current imple-
mentation2 is in Matlab, with performance times of approximately
10 minutes for the whole process of our approach, considering an
800 × 600 input image and a scale-space depth of N = 30. How-
ever, most of this time is spent in the structure extraction, and the
Poisson reconstruction takes only about 2 seconds; once structure
has been computed, it can be manipulated rather efficiently.

To solve the Poisson equation on the manipulated gradient field,
we use the sine transform based Poisson solver of Simchony et al.

2 http://artis.imag.fr/Publications/2007/OBBT07/

Figure 10: Vectorized edges, with a larger width for relevant struc-
tures (i.e. those having greater lifetime).

[1990] with Dirichlet conditions. We use the Matlab implementa-
tion provided by Agrawal et al.3

7 Discussion and future work

7.1 Discussion

In our exploration of deep structure, we mainly took inspiration
from Lindeberg [1998]; indeed, he has a notion similar to lifetime,
and the best scale measure is directly borrowed from his approach.
One alternative for measuring the best scale is the method intro-
duced by Elder et al. [1998; 2001], based on local signal-to-noise
ratios. But this approach is not easy to combine with our importance
measure, making Lindeberg’s method better suited to our purposes.
However, there is a main difference between Lindeberg’s work and
ours: we separate the importance of edges from their contrast and
profile, while he deals with all this information at once. Our ap-
proach has the advantage of being easier to manipulate: one can
modify any property without affecting the others.

This is well illustrated in Figure 11: here we show a failure case of
Winnemöller et al.’s abstraction approach [2006]. Although their
method gives convincing results in many cases, this specific exam-
ple shows how they cannot get rid of high-contrast texture lines
without abstracting the cat too far; in contrast, our approach allows
us to simply remove detail edges regardless of their contrast. An-
other interesting example comes up when we compare our results
to DeCarlo et al. [2002] as in Figure 13: while their method cou-
ple simplification of shape with detail suppression, ours allows to
remove details without necessarily simplifying shapes.

Another choice we made is to use Poisson reconstruction methods.
This body of techniques have an advantage over other diffusion ap-
proaches: it is independent from the input image. For instance,
while a diffusion method will try to blur an unwanted detail, a Pois-
son approach will simply ignore it in the reconstruction. This is
again well illustrated by the example in Figure 11, since the texture
lines simply do not appear in our image. Another advantage is that
it gives smooth results: when compared to the stylized image of De-
Carlo et al. in Figure 13, we can clearly see that our method better
represents color variations and avoids the introduction of arbitrary
color discontinuities. However, these advantages come at a cost: it
is hard to reconstruct an image with a correct contrast. This is the
reason why we introduced our contrast correction method. We can
also perform histogram equalization as a post-process, as shown in
Figure 11 (d) and (e).

3 http://www.umiacs.umd.edu/users/aagrawal/software.html



(a) (b) (c) (d) (e)

Figure 11: Comparison with the failure case of Winnemöller et al. [2006]. (a) Original picture. (b) Winnemöller et al. abstraction failure:
note how the carpet details are preserved while the fur is abstracted away. (c) Our lifetime map. (d) Our detail removal abstraction preserves
the cat structure and abstract the carpet. (e) We apply histogram equalization as a post-process to fine tune contrast.

Figure 12: Local control: original image of DeCarlo et al. [2002] and our results for two different user-specified control maps.

Finally, one may wonder why we have not used Elder et al.’s con-
tour domain approach [Elder and Goldberg 2001] instead of the
Poisson reconstruction. Although their approach could be used for
most of the stages of our method, the fact that they need to han-
dle colors on both side of edges makes the manipulation stage less
flexible.

7.2 Future work

Our approach extracts structure from a luminance image, but uses
this structure to reconstruct color images. This approach works in
most cases, since luminance carries a lot of the structural informa-
tion. However, when iso-luminant color regions “touch” each other
in the input image, our method tends to fail to reconstruct correct
colors, as shown in Figure 14. We envision two ways to solve this
problem in future work: one would be to use color-to-gray meth-
ods [Gooch et al. 2005] that would introduce color discontinuities
in our original luminance image; the other one would require to
extract edges for different channels, but it raises the problem of
combining this disparate information in the end.

Another avenue for future work resides in the design of an intuitive
and efficient user interface. For instance, we plan to develop free-
hand tools to manipulate directly edges at different scales: when
selecting an edge at a coarse scale, the user could manipulate many
details at a time, while selecting an edge at a fine scale would allow
her to edit details in subtle ways. Applying our approach to process
videos is also an exciting area of future work: Gaussian scale-space
and Poisson reconstruction approaches have been already applied
successfully to videos, and the flexibility of our structural measures
would make them tractable for manipulating image sequences.

Finally, as we see our approach as a starting point for any subse-
quent stylization, we are also interested in developing such stylized
renditions that take advantage of structural information. As an ex-
ample, we created two preliminary results, shown in Figure 15: a
drawing, and a watercolor. There are many connections to establish
between style parameters and structure information, and we hope

this work will motivate future research along this direction.

Figure 14: Failure in the image reconstruction due to the iso-
luminance of the pink flowers and green leaves, which leads to a
greenish butterfly.

Figure 15: Different stylizations obtained from our abstracted im-
ages, in a drawing and watercolor style.
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Figure 13: Comparison with the DeCarlo et al. [2002]. (a) Original picture. (b) DeCarlo et al. results exhibit flat color regions with shape
simplification (c) Our result simplifies the image while keeping smooth color variations and original shapes.

Appendix
We model a directional edge gradient I{x,y} as the 1D convolution
of a step function H of amplitude A by a Gaussian kernel gσ and a
Gaussian derivative g′

σ , resulting in:

Ix(0) =
(
H ⊗ gσ ⊗ g′

σ

)
(0) =

(
H ⊗ g′√

2σ2

)
(0)

=
∫ +∞
−∞ H(t) · g′√

2σ2
(−t)dt =

∫ +∞
0

A · g′√
2σ2

(−t)dt

= A · g√
2σ2(0) = A

2σ
√

π
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WINNEMÖLLER, H., OLSEN, S. C., AND GOOCH, B. 2006. Real-
time video abstraction. ACM TOG (Proceedings of SIGGRAPH
2006) 25, 3, 1221–1226.


