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Rendering photorealistic visuals of virtual scenes requires tractable models

for the simulation of light. The rendering equation describes one such model

using an integral equation, the crux of which is a continuous integral opera-

tor. A majority of rendering algorithms aim to approximate the effect of this

light transport operator via discretization (using rays, particles, patches, etc.).

Research spanning four decades has uncovered interesting properties and

intuition surrounding this operator. In this paper we analyze compactness,
a key property that is independent of its discretization and which charac-

terizes the ability to approximate the operator uniformly by a sequence of

finite rank operators. We conclusively prove lingering suspicions that this

operator is not compact and therefore that any discretization that relies on

a finite-rank or nonadaptive finite-bases is susceptible to unbounded error

over arbitrary light distributions. Our result justifies the expectation for ren-

dering algorithms to be evaluated using a variety of scenes and illumination

conditions. We also discover that its lower dimensional counterpart (over

purely diffuse scenes) is not compact except in special cases, and uncover

connections with it being noninvertible and acting as a low-pass filter. We

explain the relevance of our results in the context of previous work. We

believe that our theoretical results will inform future rendering algorithms

regarding practical choices.
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1 INTRODUCTION
The simulation of light transport has a long history in the computer

graphics literature. Several numerical approximations have been de-

vised such as the use of rays [Ward et al. 1988], stochasticity [Cook

1986], finite patches [Goral et al. 1984; Hanrahan et al. 1991], parti-

cles [Jensen 1996] and paths of light [Veach 1997]. Elegant theories

have confirmed that these methods all serve as approximations to

a central equation that governs radiative transfer [Heckbert and

Winget 1991; Kajiya 1986; Lessig 2012]. This rendering equation
is an integral equation which is sometimes misrepresented as a

Fredholm’s integral equation of the second kind [Kajiya 1986]. In

this paper, we confirm suspicions [Arvo 1995] that the light trans-
port operator in the rendering equation is not a Fredholm operator
in the general (common) case. Arvo analyses the specific case of

specular transport and explains that specular reflections result in a

non-compact operator. We show that the light transport operator
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is generally non-compact, barring special cases involving specific

geometric arrangement and materials. This finding explains why

several classes of light-agnostic approximation techniques result in

unbounded approximation error.

Numerous theoretical papers served to spring-board the develop-

ment of practical algorithms. Kajiya [1986] showed that distribution

ray tracing [Cook et al. 1984] is a Monte Carlo approximation to

the rendering equation. Arvo [1996] derived the operator form of

the rendering equation and analyzed the properties of the transport

operator for some settings [Arvo 1995]. Similar derivations where

recently provided for the volumetric transport equation [Zhang

et al. 2019]. Radiosity [Goral et al. 1984] was derived as a finite

element method obtained via Galerkin projection of the operator

transport equation [Atkinson and Chandler 1996; Heckbert and

Winget 1991; Zatz 1993]. Veach [1997] developed the formalism of

path tracing and proposed a Markov Chain Monte Carlo estimator.

The study of local light transport in frequency space [Durand et al.

2005; Lessig and Fiume 2010; Mahajan et al. 2007; Ramamoorthi

and Hanrahan 2004] was useful to target adaptive methods. Monte-

Carlo, finite-element and density estimation methods were analyzed

in a unified setting using reproducing Kernel bases [Lessig 2012] as

a correspondence between continuous functionals and pointwise

samples.

Alongside theoretical results, a vast amount of practical knowl-

edge and intuition has been amassed regarding the numerical simu-

lation of light transport. Approaches that employed light-agnostic fi-

nite dimensional approximations—any basis such as Fourier, wavelets,

radial basis functions—posed significant challenges for high-quality,

artifact-free rendering [Gortler et al. 1993; Hanrahan et al. 1991;

Sloan et al. 2005]. Galerkin methods that were useful for Lambertian

scenes proved difficult to extend to scenes that are not lamber-

tian [Christensen et al. 1996; Immel et al. 1986]. Adaptive computa-

tion has evolved to be a key contributor to limiting approximation

error in many scenarios such as refinement of radiosity meshes,

irradiance or radiance caching [Silvennoinen and Lehtinen 2017],

progressive photon mapping [Kaplanyan and Dachsbacher 2013]

and baked light maps [Seyb et al. 2020; Silvennoinen and Sloan 2019].

The simplicity and efficacy of Monte Carlo methods has led to their

dominance of rendering solutions for offline-rendering and their

emerging relevance to real-time rendering. We hypothesize that

these seemingly disparate observations stem from a key theoretical

property of the transport operator – that it is not compact.
Despite tremendous developments it remains a challenge to bound

approximation errors, even in simple settings such as purely Lam-

bertian scenes, across arbitrary lighting conditions. In practice, any

newly proposed approximation therefore must be validated using a

variety of lighting conditions and scenes. We explain these trends

from a theoretical perspective, by analyzing properties of the global

light transport operator independent of its discretization or any
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low-rank approximation, and independent of the illumination and

viewing conditions. We prove in particular that it is theoretically im-

possible to bound error for arbitrary (unknown) lighting conditions

in most scenes.

Contributions. In this paper, we:

• prove that the light transport operator T is not compact;

• prove that T still has countable singular values in some cases;

• identify criteria when a simpler operator Tb that transports radi-
ant exitance in Lambertian scenes is compact;

• demonstrate that T𝑏 is noninvertible and acts as a low-pass filter.

We explain the consequences of these results and use them to recon-

cile challenges faced in previous works. We believe that the analysis

of the continuous operator is useful to inform choices in emerging

trends, such as discretizations used in approximations for real-time

global illumination [Seyb et al. 2020; Silvennoinen and Lehtinen

2017] and the choice of adaptive neural bases [Müller et al. 2021].

2 REVIEW AND NOTATION
We use upper-case boldface notation for operators and scripted

upper-case letters for function spaces. We denote dot products using

⟨· , ·⟩ and norms using ∥ · ∥.

2.1 Linear operator algebra
We briefly recall various mathematical properties used in the paper.

Space and operator norms. Given a Hilbert space H (with dot

product and norm) of square-integrable functions from a domain L
to C, the norm1

of the linear operator A : H → H is (see Figure 1a)

∥A∥ = sup

∥𝑓 ∥=1

√
⟨A𝑓 ,A𝑓 ⟩ = sup

∥𝑓 ∥=1
∥A𝑓 ∥. (1)

Pointwise vs. operator-norm convergence. The convergence of
a sequence of linear operators A𝑛 to some desired operator A can

be measured in several ways. Point-wise convergence (a.k.a. strong
convergence) requires that the outputs of the sequence converge to

the output of A on all elements ofH (See Chatelin [2011] p122):

∀𝑓 ∈ H lim

𝑛→∞
∥(A𝑛 − A) 𝑓 ∥ = 0. (2)

Despite convergence everywhere, the convergence rate may be

different at each 𝑓 ∈ H . An even stronger requirement is imposed

by operator norm convergence (a.k.a. uniform convergence) which

requires that

lim

𝑛→∞
∥A𝑛 − A∥ = 0. (3)

The key distinction between these two definitions is evident when

errors 𝜖 are considered for some finite 𝑛. Strong convergence leads

to an error bound 𝜖𝑓 which depends on 𝑓 (see Figure 1.c). Uniform

convergence on the other hand guarantees that the same 𝜖 holds

for all 𝑓 ∈ H . Uniform convergence implies pointwise convergence

and we use the former by default when referring to convergence.

1
We use the same notation for the operator norm (LHS of eq. 1) and the norm over H
(RHS of eq. 1) since there is no ambiguity.

In the context of light transport, this implies uniform convergence

irrespective of the specific radiance field being transported.

Integral operators and kernels. An integral operator A given by

∀𝑓 ∈ H ∀x ∈ L (A𝑓 ) (x) =
∫
L

𝑓 (y) 𝜅 (x, y) d𝜇 (y) (4)

is a linear operator with a kernel 𝜅 (Note that we do not use the

term kernel to describe the null space N of A where A𝑓 = 0 for all

𝑓 ∈ N ). A is known as a partial integral operator when the integral

is over a linear subspace of the integration domain L.

Compact sets and operators. A subset𝑊 ⊆ L is called compact if
every sequence in𝑊 has a converging subsequence in𝑊 (assuming

L is a metric space). Any finite set is trivially compact. A linear

operator is called compact2 if it maps the unit ball into a set whose

closure is compact. Equivalently, a compact operator A : H → H
transforms any bounded sequence 𝑓𝑛 into a sequence A𝑓𝑛 for which

at least one subsequence converges inH (see Figure 1b). Finite-rank

operators are always compact. The identity operator over infinite-

dimensional spaces is not compact. The set of compact operators is

closed w.r.t. the operator norm (See Gohberg [1978] p67).

Spectral properties3. A linear operator is normal when it com-

mutes with its adjoint. Being normal is the necessary and sufficient

condition for an operator with countable eigenvalues to have real

eigenvalues and orthogonal eigenvectors. A normal operator is al-

ways self-adjoint. Compact operators in infinite dimensions are

never invertible (see Conway [1990] p214). Yet their set of eigen-

values is countable with 0 as a unique limit point (See Barry [2000]

section 1.2). On Hilbert spaces, compact operators can be uniformly

approximated (in the operator norm) using finite rank linear op-

erators. That is, compact operators can be reliably approximated

by their action over a finite dimensional space which in practice

allows approximations such as finite element and collocation meth-

ods [Chatelin 2011] and kernel-Nyströmmethods [Wang et al. 2009].

Hilbert-Schmidt and trace-class operators. Some compact op-

erators satisfy stronger properties: Hilbert-Schmidt operators are

the integral operators with a square-integrable kernel. For such

operators, the sum

∑
𝑖≥0 ∥A𝑒𝑖 ∥2 is finite for any orthogonal basis

{𝑒𝑖 }𝑖>0 ∈ H (Gohberg [1978] p106). Hilbert-Schmidt operators

whose trace

∑
𝑖≥0⟨A𝑒𝑖 , 𝑒𝑖 ⟩ converges are called trace-class or nu-

clear operators (see Gohberg [1978] p95). We show that the radi-

ant exitance transport operator in Lambertian scenes is sometimes

Hilbert-Schmidt or even trace-class depending on the geometry.

Trace class implies Hilbert-Schmidt, and Hilbert-Schmidt implies

compactness.

2.2 The light transport operator
Wedenote the set of surfaces in the scene using 𝑆 and the hemisphere

of outgoing directions expressed in the local coordinate system

2
A broader definition exists for non linear operators

3
Throughout this paper, we use ’spectral’ to refer to harmonic analysis rather than to

the color spectrum of visible light. Radiance fields are assumed to be monochromatic.
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(a) a linear operator and the relevant norms (c) point-wise convergence (d) other notation(b) compact operator

converging
subsequence

bounded
sequence

Fig. 1. (a) A linear operator A applied to a function 𝑓 ∈ X. e.g. 𝑓 could be the emitted radiance field in a scene and A could be the transport operator
that produces a one-bounce radiance field A𝑓 . (b) A compact operator maps a sequence of bounded points (blue dots) to one that contains a converging
subsequence (dark pink dots). An operator A may be approximated using a sequence of operators {A𝑛 }. One way to assess its convergence to A is by
measuring the error on a specific function 𝜖𝑓 (or 𝜖𝑔) as shown in (c). This corresponds to different convergences across lighting conditions (𝑓 and 𝑔) in a given
scene. We prove that the light transport operator is not compact and therefore stricter convergence, in the operator norm (uniformly across all points), cannot
be guaranteed. We hypothesize that this property necessitates ’case-by-case’ demonstrations in rendering.

at each point on 𝑆 using Ω. The space of square-integrable half-

dome distributions O = 𝐿2 (Ω) and the space of square integrable

functions B = 𝐿2 (𝑆), with respective measures cos𝜃 d𝜔 and dx, are
Hilbert spaces

4
. Their tensor product space H is the Hilbert space

we use to represent radiance distributions, with Lebesgue measure

𝑑𝜇 = cos𝜃 𝑑𝜔 dx (See notations on Fig. 1.d), and inner product

⟨𝐿1, 𝐿2⟩H =

∫
L
𝐿1 (x, 𝜔)𝐿2 (x, 𝜔) d𝜇. (5)

A Hilbert space allows us to consider compactness properties for

adjoint operators (which need inner products, thus preferable over

Banach spaces) while remaining less restrictive than Sobolev spaces.

C Complex plane

𝑆 Surfaces of the scene

Ω Half-sphere of outgoing directions (local frame)

L 4D domain 𝑆 × Ω
H The space of radiance distributions 𝐿2 (L)
B The space of spatial distributions 𝐿2 (𝑆)
O The space of directional distributions 𝐿2 (O)
⟨ , ⟩H Dot product weighted by cosine (Eq. 5)

∥ ∥H Norm induced by ⟨ , ⟩H
𝐿 : L → R Radiance function. 𝐿 ∈ H
𝐸 : L → R Emitted radiance 𝐸 ∈ H
K : H → H Global reflectance operator

Kx : O → O Local reflectance operator at x
G : H → H Re-parameterization operator

T : H → H Light transport operator (T = KG)
T𝑏 : B → B Radiant exitance transport operator

𝜌 (x) Albedo at x ∈ 𝑆

𝜌 (x, 𝜔, 𝜔 ′) BRDF at x in directions 𝜔 and 𝜔 ′

𝑣 (x, y) Visibility function between points x and y
𝜅 (x, y) Integral kernel of T𝑏
𝑝 : L → L Function mapping (x, 𝜔) to the point (and direction)

seen from x in direction 𝜔 , with 𝑝2 (x, 𝜔) = (x, 𝜔)

Fig. 2. Notations used in this paper.

4
Both spaces are complete inner product spaces [Royden and Fitzpatrick 2010].

Radiance transport operators. The reflectance operator K : L →
L transforms a field of incident radiance into a field of reflected

radiance. To simplify notations (without altering the properties of

the operators), we parameterize both the incident and outgoing ra-

diance in the upper hemisphere of directions Ω. With these settings

(See Fig.1.d), we have

(K𝐿) (x, 𝜔) =
∫
Ω
𝐿(x, 𝜔)𝜌 (x, 𝜔, 𝜔 ′) cos𝜃𝑑𝜔 ′, (6)

where 𝜌 : 𝑆×Ω×Ω → R+ is the bidirectional reflectance distribution
(BRDF).

The light transport operator T transports a field of radiance in

the scene to the next visible surface where it reflects it to obtain

the transported and scattered radiance field. Arvo [1996] defined

a linear operator G to transform a radiance field 𝐿 into the field

after transport to the nearest surface. Defining 𝑝 to turn a point and

direction (x, 𝜔 ′) into the corresponding point and direction (y, 𝜔 ′′)
as traced from x along direction 𝜔 ′

(see Figure 1.d), the transported

radiance before reflection will be

𝐿𝑖 (x, 𝜔 ′) = 𝐿(𝑝 (x, 𝜔 ′)) = (G𝐿) (x, 𝜔 ′) .

Using this, the light transport operator T is expressed

(T𝐿) (x, 𝜔) =
∫
Ω
𝐿𝑖 (x, 𝜔)𝜌 (x, 𝜔, 𝜔 ′) cos𝜃 ′𝑑𝜔 ′ = (KG𝐿) (x, 𝜔). (7)

At equilibrium, the radiance field 𝐿 is the sum of the emitted radi-

ance field (from light sources) 𝐸 and transported radiance (bounced

once) in the scene, leading to the light transport equation

𝐿 = T𝐿 + 𝐸. (8)

Comments on transport operators. K and T are partial integral

operators, since the integral is defined over a subspace of L. Since K
only acts over directions, Equation 6 may also be written using the

local reflectance operator Kx : O → O, considering x as a constant.

Defined as above, K and G act and take values in the same spaceH .

With this convention, both K and G are self-adjoint [Veach 1997]

3
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w.r.t. the inner product in Equation. 5, and wherever p is defined,

we have (G2𝐿) (x, 𝜔) = 𝐿(x, 𝜔).

Radiant exitance operator. We will also show that a restricted

transport operator which only applies to diffuse surfaces exhibits

different properties. Since 𝐿 in scenes with only Lambertian surfaces

is independent of angle, we define a radiant exitance (or radiosity)

field instead 𝐵 ∈ B with 𝐵(x) =
∫
Ω 𝐿(x, 𝜔) cos𝜃 d𝜔. As a result,

Equation 7 turns into an equation over exitant radiance

(T𝑏𝐵) (x) =
∫
𝑆

𝜅 (x, y)𝐵(y) dy, (9)

with a kernel that is (notation as in Figures 1.d and 2)

𝜅 (x, y) = 𝑣 (x, y)𝜌 (x) cos𝜃 cos𝜃
′

𝜋 ∥x − y∥2
. (10)

While T is a partial integral operator, T𝑏 : B → B is a proper
integral operator, since the integration is over 𝑆 – the entire domain

of elements of B. However unlike T, operator T𝑏 cannot be written

as a nontrivial product of self-adjoint operators both operating over

B.

3 THEORY
In this section, we prove that the light transport operator is not

compact in general. Compact operators are never invertible, act as

low-pass filters, and admit a Schmidt expension [Gohberg and Kreı̆n

1978]. However, since we show that T𝑏 is not compact in general

we also address the questions of whether such properties still hold.

3.1 Compactness theorems
Theorem 3.1: The light transport operator T is not compact.
Proof: In order to express T as an integral operator over the full

domain 𝑆 × Ω one needs to rewrite 𝐿𝑖 as a function of 𝐿(y, 𝜔 ′) in
Equation 7, and restrict the integral to pairs for which (x, 𝜔) =

𝑝 (y, 𝜔 ′). Indeed𝜔 ′
is already implicitly determined by the positions

of x and y. The full-domain integral therefore needs an additional

Dirac function, which makes the operator a partial integral operator.

Consequently T is not compact [Kalitvin and Zabrejko 1991]. □

Intuitively, partial integral operators are not compact because they

leave infinite dimensional subspaces untouched. This is the case for

K that ignores the spatial component of light distributions, while

Kx (See supplemental material) is compact.

Theorem 3.2: If the kernel𝜅 of the integral operator T𝑏 in Equation 9
is bounded over 𝑆2, then T𝑏 is compact.
Proof: If 𝜅 is bounded over 𝑆2, then it is also square-integrable

over that domain, which makes T𝑏 a Hilbert-Schmidt operator. This

implies that T𝑏 is compact for this case. □

Theorem 3.3: If 𝜅 is not bounded, then T𝑏 is not compact.
Proof: We prove this (see Section 3 of the supplementary mate-

rial) by constructing a bounded (in the 𝐿2 norm) sequence of light

distributions 𝐵𝑛 such that T𝑏𝐵𝑛 will contain arbitrarily high spatial

frequencies. Because of this, 𝑢𝑛 = T𝑏𝐵𝑛 is proved to not have any

converging subsequence in B. We conclude that T𝑏 is not a compact

linear operator on the Hilbert spaceH . Consequently, the deviation

of T𝑏𝐵𝑛 from finite rank approximations of light distributions will

not converge to 0 for arbitrarily large finite function bases. □

We provide intuition of Theorem 3.3 via an experiment in Figure 3.

Starting with a unit area disk emitter 𝑆0 tangent to the edge of two

abutting Lambertian half-planes, we render images by progressively

halving the emitting zone while doubling its emittance to obtain

a sequence of scenes with 𝐿2-bounded existant radiance. For each

𝑛, we transport radiance to the receiver plane via T𝑏𝐵𝑛 , which
tends towards a spike as 𝑛 → ∞. A tabulation of differences in the

sequence of T𝑏𝐵𝑛 , calculated via ∥T𝑏𝐵𝑛 − T𝑏𝐵𝑛+𝑝 ∥2, shows that it
does indeed not converge to zero. Although placing the emitter at

the edge is an exaggeration that allows us to illustrate this effect with

one-bounce transport, this situation occurs commonly in the multi-

bounce setting. Fortunately, the operator exhibits better behavior

away from such ‘edge’ cases as shown by the following theorem.

Theorem 3.4: In any region 𝐴 of the scene for which 𝜅 is bounded
over 𝐴 × 𝑆 , the output of T𝑏 coincides with the output of a compact
operator T′

𝑏
: 𝑆 → 𝐴.

Proof: We prove this (Proposition 5.1 in Section 5 of the supple-

mentary material) by constructing a Hilbert-Schmidt operator T′
𝑏

∀𝐵 ∈ B ∀x ∈ 𝐴 (T′
𝑏
𝐵) (x) = (T𝑏𝐵) (x). □

In summary the above theorems reveal that operators T and T𝑏
exhibit different mathematical properties, because they act between

different pairs of spaces. T is never compact, including when all

materials are Lambertian. The potential for compactness of T𝑏 arises

from the rewriting of T into another space (radiant exitance rather

than radiance) within which their values actually match when the

scene is Lambertian. While T𝑏 is not compact in the majority of

cases, theorem 3.4 states that T𝑏 behaves like a compact operator

almost everywhere, except near points where 𝜅 is unbounded. In

particular, 𝜅 is unbounded next to concave abutting edges, corners,

and contact points between surfaces. However T𝑏 is compact in

purely curved scenes for which we prove that 𝜅 is bounded even

though it is discontinuous (Sec.4 in the supplementary material).

Further, we prove its continuity at points where the two principal

curvatures are equal (an uncommon but curious case).

3.2 Consequences
AFredholm equation defines a compact linear operator. Since neither

T nor T𝑏 (generally) is compact, the rendering equation is not a

Fredholm equation per se. The lack of compactness of T implies that

its finite rank approximations do not converge to T in the operator
norm (Equation 2). In other words, for any given 𝜖 > 0 no finite rank

approximation T𝑛 can ensure that ∥(T𝑛 − T)𝐿∥ ≤ 𝜖 across all light

distributions 𝐿. However, since pointwise convergence is assured 5
,

it is still possible to provide a well-crafted approximation T𝑛𝐿 to

T𝐿 for a specific lighting distribution 𝐿. This result supports the

success of adaptive methods for specific light transport problems.

Although a series of compact operators T𝑛 that strongly con-

verge to T or T𝑏 may be constructed – say using a bounded kernel

5
This can be proved by projecting 𝐿 over an orthogonal basis (such as wavelets) and

using the fact that ∥𝑇𝑏 ∥ < 1.

4
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Fig. 3. Illustration of our proof that the radiant exitance transport operator T𝑏 is not compact. Left: rendered scene with a disk 𝑆𝑛 emitting diffuse light. The
disk is tangential to the abutting edge. Center: measured radiant exitance on the receiver surface for 𝑛 = 7. As 𝑛 is increased, the spatial frequences of the
emitted energy increases while preserving its 𝐿2 norm, as does the received energy. In the limit, it escapes any finite rank approximation over the space of
functions on the receiver. Right: table showing that the pairwise measured 𝐿2 distances between T𝑏𝐵𝑛 and T𝑏𝐵𝑛+𝑝 do not depend on 𝑛 (for large 𝑛, because
the receiver is bounded) and converges to non-zero values with 𝑝 for a given 𝑛. To ensure numerical accuracy in this figure we reduce the disk radius by a
factor of 1.2 instead of 2, and use the analytical formula of Naraghi [1988].

𝜅𝑛 (x, y) = max(𝑛2, 𝜅 (x, y)) – pointwise convergence does not yield

a compact operator in the limit (unlike with uniform convergence

since compact operators form a closed set).

3.3 Singular values expansion of T
A general factorization technique extends the SVD for all bounded

linear operators on infinite dimensional spaces. If the operator is

compact, a converging infinite sum known as the Schmidt expan-

sion stands for the SVD [Gohberg and Kreı̆n 1978]. Otherwise, the

factorization involves the use of two unitary operators (standing for

the right and left singular vectors) and a function-multiply operator

in place of the SVD diagonal matrix [Crane and Gockenbach 2020].

Since T is not compact, we have no guaranty about the existence

of a Schmidt expansion. The following result proves that such an

expansion actually exists in a limited set of configurations.

Theorem 3.5: In closed scenes with a finite number 𝑛 of non-
spatially-varying materials𝑚𝑖 : Ω × Ω → R, the action of T over
any radiance distribution 𝐿 can be written as

T𝐿 =

𝑛∑
𝑖=1

∑
𝑗>0

𝜌𝑖 𝑗 ⟨𝜑𝑖𝑗 , 𝐿⟩H𝜓
𝑖
𝑗 , (11)

where 𝜌𝑖 𝑗 > 0 is 𝑠𝑖 = ±1 times the j𝑡ℎ eigenvalue of𝑚𝑖 , and {𝜓 𝑖
𝑗
}𝑗>0

and {𝜑𝑖
𝑗
}𝑗>0 are two orthogonal bases ofH defined as

𝜓 𝑖
𝑗 (x, 𝜔) = 𝜙𝑖𝑛1

(x)𝑟 𝑖𝑛2

(𝜔)

𝜑𝑖𝑗 (x, 𝜔) = 𝑠𝑖G𝜓 𝑖
𝑗 (x, 𝜔)

in which {𝜙𝑖
𝑘
}𝑘>0 form an orthogonal basis of the subset of 𝑆 where

the material is𝑚𝑖 , {𝑟 𝑖𝑘 }𝑘>0 are the eigenfunctions of Kx for material
𝑚𝑖 , and 𝑔 : 𝑗 ↦→ (𝑛1, 𝑛2) provides a bijection between N and N2.

In the proof (derived in Sections 1 and 2 of the supplementary

material) we show that𝜓 𝑖
𝑗
and. 𝜑𝑖

𝑗
are the eigenfunctions of TT∗ and

T∗T respectively, and that 𝜌2
𝑖 𝑗
are the eigenvalues of TT∗. Curiously,

in addition to the property that eigenfunctions for each material are

orthogonal, we also find that (see Section 2 of the supplementary

material) the sets of all eigenfunctions is also orthogonal. Formally,

{𝜓 𝑖
𝑗
}𝑗>0 is orthogonal (as is {𝜑𝑖𝑗 }𝑗>0) and the set of all {𝜓 𝑖

𝑗
}𝑖, 𝑗>0 is

also orthogonal and complete in 𝐻 (similarly for {𝜑𝑖
𝑗
}𝑖, 𝑗>0). This

result stems from a partitioning of 𝑆 into a finite number of regions

that have the same material. Theorem 3.5 can be rewritten as

T𝐿 =
∑
𝑛>0

𝜌𝑛 ⟨𝜓𝑛, 𝐿⟩H𝜑𝑛, (12)

where 𝜌𝑛 is the absolute value of an eigenvalue of one of the ma-

terials 𝑚𝑖 , repeated an infinite number of times within the sum.

Equation 11 assumes the familiar form of SVD and is an extension

of the concept for T as an operator over an infinite dimensional

space. The above does not apply in the space B of radiant exitance

distributions since, for Lambertian materials, functions 𝜑𝑛 in Equa-

tion 12 have a non constant angular component.

3.4 Non-invertibility of T𝑏
When T𝑏 is compact it is trivially not invertible. The question is

solved for the general case by the following theorem:

Theorem 3.6: T𝑏 is not invertible.
Proof: We prove this using a counterexample in Section 5 of the

supplementary material. We exploit the ‘compact-like’ behavior

of T𝑏 almost everywhere as proved by Theorem 3.4. Using this

property, we construct a counterexample – a light distribution that

is not in the span of T𝑏 . □

Since the output of T𝑏 matches that of a compact operator in most

regions of the scene, the proof leverages the existence of light distri-

butions for which the operator is not-invertible. e.g. inferring diffuse

emittance for a discontinuous distribution of radiosity on a receiver

in the absence of occluders. In practice evaluating the solution to

T𝑋 = 𝐷 causes 𝑋 to have arbitrarily high frequencies when the

inverse does not exist. Since T washes out these high frequencies

(See Theorem 3.7), it results in an arbitrarily large norm. This is

analogous to deconvolution of a step-function.

3.5 T𝑏 acts as a smoothing operator
We show that T𝑏 naturally acts as a low-pass filter when it is com-

pact, which also remains true almost everywhere when 𝑇𝑏 is not

compact.

5
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Theorem 3.7: In regions 𝐴 where 𝜅 is bounded over 𝐴 × 𝑆 , T𝑏 acts
as a low-pass filter in frequency space.
Proof: The proof (Section 5 of the supplementary material) first

shows that compact operators, in general, act as low-pass filters,

and combines this result with Theorem 3.4 stating that T𝑏 locally

behaves like a compact operator in regions of bounded kernel. That

is, given a basis {𝑏𝑛}𝑛>0 of B with increasing frequency content

with 𝑛, we have

lim

𝑛→∞
∥T𝑏𝑏𝑛 ∥𝐴 = 0,

where ∥ .∥𝐴 is a norm for square-integrable functions over 𝐴. □

For Lambertian scenes with unbounded𝜅 (T𝑏 is non compact), the

transport process does not reduce high frequencies in the radiant

exitance. Thus, an arbitrarily large number of basis functions is

required to faithfully (fixed precision) represent T𝑏𝐵 across all 𝐵.

Unfortunately this represents a practically common situation.

4 CONNECTIONS TO PREVIOUS WORK
The theoretical properties that we identify in Sec. 3 manifest as

practical challenges in estimating light transport and have been

encountered via different approaches spanning decades. Here, we

address three classes of approaches that are relevant: Methods that

estimate light transport via a low-rank approximation of the trans-

port operator; adaptive methods that alleviated the problem by

tailoring solutions to specific light distributions; and methods that

pertain to inverting the transport operator. Finally we also discuss

connections to volumetric light transport.

4.1 Finite-rank and finite-bases: cannot bound error
Our theory explains observations that have been made empirically

via trial and error. Methods which discretize the transport operator

directly (using a matrix), such as radiosity [Goral et al. 1984; Hanra-

han et al. 1991] and matrix row-column sampling [Hašan et al. 2007],

have struggled with bounding approximation error for arbitrary

light distributions. This is often because they represent T using a

low- or finite-rank matrix. Although this might be reasonable for

local analysis (e.g. see Lessig [2012, p.470] and Mahajan [2007]),

the arguments do not hold for the global operator. It is also well

known that extending such methods to non-Lambertian transport

is challenging. Virtual point lights in instant radiosity [Keller 1997]

create singularities at abutting edges (see Section 3.2) thereby neces-

sitating ad hoc strategies including blurring energy contributions

over spheres to avoid singularities [Hašan et al. 2009].

Approximating 𝐿 in multi-bounce transport using a finite set of

basis functions is another example of methods that have faced diffi-

culties in scalable extensions to glossy scenes. Although T is often

intuitively imagined to ‘smooth’ out 𝐿 for successive bounces, the

arbitrary locations of discontinuities implies that the use of a fixed

basis, regardless of the choice of functions (Fourier, wavelets, radial

basis functions), would require an infinite set of basis functions even

for simple scenes.

4.2 Adaptive methods
High error due to fixed bases motivated the development of adap-

tive methods where the discretization is directly dependent on the

specific distribution of light and therefore enables point-convergence
to an arbitrary error threshold. For example, adaptive refinement

of surface patches at each Gauss-Seidel iteration while calculat-

ing radiosity [Cohen et al. 1988; Heckbert 1990] and irradiance

caching [Křivánek et al. 2008] where the decision to add a new point

to the cache depends on local variation of the irradiance (spatial as

well as angular with respect to the normal). Furthermore adaptation

was devised to make caching practical in conjunction with clamp-

ing [Křivánek et al. 2006] and for global illumination [Křivánek et al.

2008]. Adaptive sampling enables sparsification of transport matri-

ces for use in real-time applications [Huang and Ramamoorthi 2010].

These works invented targeted schemes for specific applications.

Realizing the importance of adaptive methods, systematic theory

and tools were developed to analyze and propagate local variation

in the radiance field [Durand et al. 2005]. These methods have been

used to inform adaptive sampling strategies for reducing approxima-

tion error from optical effects such as depth of field [Soler et al. 2009],

shadows [Ramamoorthi et al. 2012], motion blur [Egan et al. 2009]

and glossy materials [Bagher et al. 2012]. Some practical methods

develop low-dimensional approximations by tailoring data-driven

bases to the output of T rather than developing light-agnostic dis-

cretizations [Lehtinen et al. 2008]. This approach resembles methods

for dimensionality reduction of large matrices [Halko et al. 2011].

More recently, neural networks were trained on-line for caching

transported radiance in real-time [Müller et al. 2021] applications.

Neural radiance caches typically map 𝑆 × Ω onto radiance values.

Although they do not explicitly adapt the sample positions, the adap-

tation stems from a combination of two effects. First, rays are traced

from the camera towards the scene to determine cache locations. In

addition, the radiance cache is not trained across distributions, but

on a specific light distribution (the one being rendered).

4.3 Invertibility
The inference of emitting distributions 𝐿𝑒 that result in a given

transported distribution 𝐿 involves inverting the transport equa-

tion. Although T may not be invertible (see Section 5), two broad

strategies have been useful in inferring 𝐿𝑒 . The first is to consider

only direct reflection [Ramamoorthi and Hanrahan 2001, 2004] and

therefore only requires approximately inverting the local reflectance

operator Kx—which is actually not invertible either as explained in

Section 5. The second strategy, for multibounce inverse light trans-

port [Bai et al. 2010; Seitz et al. 2005] appears deceptively simple

when the operator equation is rewritten as 𝐿𝑒 = (I − T)𝐿. However
since only a sparse sampling of 𝐿 is available, say from a photograph

or a video, and since scene properties (properties of T) are usually
unknown, the inference problem is ill-posed.

4.4 Volumetric light transport
The transport of light through participating media is governed by

a differentio-integral equation from which an operator equation

can be derived [Jakob and Marschner 2012; Zhang et al. 2019]. All

operators in their equation contain partial integrals, either over

direction only or integrating along rays. Hence, just as with the

transport in non-Lambertian scenes described in Sec. 3.1, all these

operators are not compact in the general case. As with Lambertian

6
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surface transport, it is possible that special cases exist for volumetric

transport where the operator is compact. We leave this analysis as

future work.

5 DISCUSSION

Monte Carlo methods. Literature from the era of Monte Carlo

(MC) dominance in rendering is notably sparse in our literature

review. The main reason for this is that MC methods do not rely

on finite-rank approximations, fixed bases or discretizations of the

transport operator. However we believe that the results in this paper

will gain relevance with emerging trends to revisit older strategies

for applicability towards real-time rendering or the use of modern

representations such as neural networks.

Relevance. There are two strands of emerging research which

could benefit from this analysis. First, precomputed global illumina-

tion will play a significant role at least until gaming consoles are

equipped with hardware raytracing capability. These methods rely

on encoding transport using textures (lightmaps) which involves

important choices surrounding discretization and representation

using bases. Recent trends in realtime global illumination also show

the implicit usage of low rank approximations of T in the form of

basis functions [Koskela et al. 2019] or probes [Hu et al. 2021; Ma-

jercik et al. 2019]. Another recent area is the use of neural networks

to encode radiance in a scene [Mildenhall et al. 2020], for which

the impact of discretization (sampling) is not well studied. The de-

velopment of these representations in tandem with light transport

capability is still in its early stages [Boss et al. 2021; Srinivasan et al.

2021; Zhang et al. 2021]. Adapting solutions to visibility is a com-

mon heuristic. Although discontinuities due to visibility do pose

problems they are not related to boundedness or compactness as

discussed in this paper. We believe that a better understanding of T
could spur principled choices in such applications.

Global vs. local reflectance. The (global) reflectance operator K
acts on an incident radiance field over 𝑆 × Ω to produce an exitant

radiance field. Its local counterpart K𝑥 : O → O can be defined as

an integral operator that turns indicent radiance at a point x into

exitant radiance at x. It can be shown that K𝑥 is compact while K is

not (See supplemental). The latter can be viewed as a tensor product

of the identity operator (in space) and K𝑥 in directions, hence its

non compactness. For this reason an infinite set of local operators

K𝑥 must share eigenvalues with each of them for global eigenfunc-

tions of K to exist, while the tensor product nature of K causes

infinite multiplicity of these eigenvalues. Applications that analyze,

approximate or invert K𝑥 do so using a finite rank approximation

for K𝑥 [Ramamoorthi and Hanrahan 2004], which amounts to pro-

jecting radiance onto a subspace via low-pass filtering (in addition

to the low-pass effect driven by the kernel of K), although K𝑥–as a

Hilbert-Schmidt operator in infinite dimensions–is not invertible.

Difficulty computing eigenvalues. Most numerical methods for

estimating eigenvalues and eigenfunctions of operators assume that

their eigenvalues are decreasing. However, since T is not compact,

its eigenvalues may not even be countable, and if so, will certainly

not tend to 0. Thus an empirical demonstration on real scenes is

challenging. In particular, approximating eigenvalues of T (or T𝑏
when not compact) using an eigensolver over a transport matrix

is absolutely not guaranteed to provide an approximation of the

actual eigenvalues. Another practical problem is that in some scenes

(non closed scenes where G is not defined everywhere), the series

given by theorem 3.5 does not stand for a proper singular value

decomposition since {𝜑𝑖
𝑗
}𝑖 𝑗 is not orthogonal.

Open problems and future work. In the special cases where T𝑏
is compact, we know that its eigenvalues are countable. When G is

defined everywhere (closed scene), T has countable singular values.

Other than these situations, we do not know whether T or T𝑏 have

a countable set of eigenvalues. We do expect infinite multiplicity for

the latter as previously explained. Since it is not compact, it remains

to be proven whether T is invertible. Since light transport operators

do not satisfy key properties (continuous kernel, self-adjointness,

etc) required by existing tools in operator analysis, further work is

necessary to enable their analyses.

6 CONCLUSION
In this paper, we prove theoretical properties pertaining to the com-

pactness of the light transport operator. Our results provide mathe-

matical reassurance of intuitions gleaned from decades of empirical

experience. For example, the lack of compactness confirms that the

light transport operator does not lend itself to low-dimensional

approximations except in specific cases – away from edges and

diffuse surfaces. The absence of uniform convergence implies that

estimation errors will depend on specific light emission radiance

and radiant exitance explains the difficulties in extending algorithms

that perform well on scenes with diffuse materials to scenes with

glossy materials. While these properties may be the consequence

of the mathematical model considering light transport as a non-

oscillatory simplification of Maxwell theory, their study remains

relevant in the context of geometric optics. We hope that future

work will leverage properties such as the existence of an SVD of T
to design adaptive algorithms where the discretization of T could

sidestep problems caused by its lack of compactness.
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