
Graphics Hardware and
Graphics Programming
Interfaces

Mark Segal

segal@ati.com



Graphics Hardware – High Level

CPU

I/O

North-
bridge

Main
Memory

Host Interface

3D pipelineOther Important
Graphics Stuff

Memory Controller

gfx memory

R300, etc.

256

AGP 8X



3D Pipeline Overview

• 350 M Vertices (=Tris)/sec

• 2.6 G Pixels/sec

• Programmable vertex, fragment
processors

• Allows
– Sophisticated shading

– High scene, depth complexity

– Multipass

– Computation on GPUs

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



New Features

• Floating-point fragments/pixels
• Usable programmable vertex, fragment

engines
– Limited; not like a CPU

• Other Features
– Early/Hierarchical z
– Occlusion testing
– Antialiasing

• Multisample (vs. downsampling)



New Applications

• Programmability
– Complex lighting
– Motion blur, depth of field
– Other computations

• Floating-point pixels, textures
– High dynamic range rendering
– Volume rendering
– Multipass computation

• Many recent examples



ATI Hardware

• 9700/9800, 9800XT (R300/R350)
• 4 vertex processors
• 8 fragment processors

– Low cost versions with 4

• 256 vertex instructions
– Loops, subroutines may increase this

• 160 fragment instructions
– 32 texture ops, 64 color ops, 64 alpha ops

• Up to 4 render targets



3D pipeline – vertex fetch

Getting vertex data

Host
Interface

Command
Processor

Vertex
Fetch M

em
or

y 
C

on
tr

ol
le

r

CPU

Host
Interface

Command
Processor

Vertex
Fetch G

ra
ph

ic
s 

M
em

or
y

Vertices

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer

Immediate mode;

Direct specification



3D pipeline – vertex fetch

Getting vertex data

Host
Interface

Command
Processor

Vertex
Fetch M

em
or

y 
C

on
tr

ol
le

r

CPU

Host
Interface

Command
Processor

Vertex
Fetch G

ra
ph

ic
s 

M
em

or
y

Vertices

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer

Vertex arrays;

Indirect specification

Commands



3D pipeline – vertex fetch

Getting vertex data

Host
Interface

Command
Processor

Vertex
Fetch M

em
or

y 
C

on
tr

ol
le

r

CPU

Host
Interface

Command
Processor

Vertex
Fetch G

ra
ph

ic
s 

M
em

or
y

Vertices

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer

Index arrays;

Indexed specification

Commands

Indices



Vertex Processors

• 4 4-component dot-product
engines
– 350 MHz

– 4 clocks per vertex per engine

• 32-bit floating-point

• Arithmetic instructions:
– madd, 1/x, 1/sqrt(x), etc.

– slt (set on less than)

• Flow control instructions
– call, return, loop, jnz, etc.

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



Vertex Processor - Implementation

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer

16x128 1W3R
Register File

Input Registers

Constants

256x128 1W3R
Register File

Temporary Registers

8x128 1W3R
Register File

ALU

16x128 1W1R
Register File

Output Registers

Vertex
Stream In

Vertex
Stream Out

Register
Interface

Sequencer



Vertex Processing – Final Steps

• Clip against view frustum
– May introduce new vertices

– Also “clip” parameters

– Slow

• Perspective divide
– Divide by w

• Viewport transform
– Scale & offset x, y

• Triangle assembly

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



Scan Conversion

Convert triangles to fragments
– R300/350: 2 stage

• Coarse: 8x8  Fine: 2x2

• Cache friendly

• Enables coarse depth-based rejection

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer Coarse Scan Conversion Fine Scan Conversion



Parameter Interpolation

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer

• Compute parameter (depth, color,
texture coord) at fragment
– Use plane equation (affine in x,y)

derived from values at vertices

– Perspective correct color, texture
require division by interpolated 1/w

2p
0p

1p

)cy bx (a / )cy bx(a  s 1/w1/w1/wsss ++++=

zzz cy bx a  z ++=



Fragment Processors
• 8 4-component dot-product engines

– 350 MHz
• 4x Interleaved ALU op/texture fetch

– ALU ops:
• MUL, ADD, EXP, etc.
• DP3, DP4
• 3-component + scalar coissue

– Texture fetch
• TEXLD, TEXLDP (projective), TEXLDBIAS

– Interleaving means texture fetch can be free
• 24-bit floating-point

– 32-bit components from texture or interpolation
– No mipmapping on floating-point textures

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



Fragment Processor
Implementation

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer

10x96 1W3R
Register File

Input Registers

Constants

32x96 1W3R
Register File

Temporary Registers

8x96 1W3R
Register File

ALU

5x96 1W1R
Register File

Output Registers

Fragment
Stream In

Fragment
Stream Out

Register
Interface

Sequencer

Texture Unit

To Memory



Per-Pixel Operations

• Fog: c = ccurrent * (1-f) + cfog * f

• Alpha function:
– kill a fragment based on alpha value

• Depth and Stencil Tests
– Conditionally kill fragment based on

depth or stencil test; conditionally
update depth & stencil

• Color blend
– Blend incoming/existing colors

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



Framebuffer

• Floating-point framebuffer
– 32-bit components

– Also fixed point, including 10:10:10:2

• 340 MHz 256-bit DDR-2
– > 20 GB/sec

• Color, texture, depth, stencil caches
– Reduce memory bandwidth

– Benefit from spatial, temporal locality

• Lossless color & depth compression

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



F-buffer

• Fragments written in rasterization
order
– x,y coordinates not used

• Useful for multipass transparency
– no double hits

– same geometry generates same
fragments in same order

– bind as texture in subsequent passes

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

Framebuffer



Non-Features

• Data-dependent conditionals
– Hard in a SIMD environment

• Different processors execute different code

• Texture in vertex processors
– Extra texture fetch, cache, memory requirements

• More vertex or fragment instructions
– More on-chip instruction memory

• Global accumulate
– SIMD again

• Not a CPU!
– performance



Graphics Programming Interfaces



Graphics Programming Interfaces

• Provide software interface to graphics hardware

• Lowest level:
– Expose full functionality of hardware at full performance

– Hide device-specific details

– Limit interface changes generation to generation

• Higher levels:
– Simplify application programming

• E.g. scene graph, shading languages



Interface Levels

• Low level
– Close to hardware

– Like assembly language

• High Level
– Insulates programmer from details

– Shading Languages

– Scene Graph Libraries



• Expose pipeline

   historically fixed-function
• OpenGL

– Requires all functionality; software path if not

• Direct3D
– Uses capability bits

• Both provide vertex, fragment “assembly
language”

Low Level Interface

Vertex Triangles Rasterize Fragments Framebuffer

Texture



High Level Interface

• Programmable
• Renderman

– Shading-specific; not designed for hardware

• HLSL (DirectX), GLSL (OpenGL), Cg
(nVidia - both)
– General, but all expose vertices vs. fragments
– GLSL virtualizes number of passes

• Ashli (ATI)
– Tool to “compile” Renderman to D3D/OpenGL



High Level Issues

• How much low level to expose?
– 3x1, 4x1, 4x4 vectors/matrices
– Component swizzling

• Who owns the compiler?
– Cg, HLSL, Ashli: compile to abstract machine

language
– GLSL: Compiler in the driver; target language

is hidden
– Issues for portability, performance, debugging



Re-examine hw abstraction

• OpenGL (originally)
– Not programmable
– Graphics memory not

accessible, special purpose

• Changes:
– Programmability
– Flexible use of graphics

memory (multipass, render-
to-texture, render-to-vertex-
array)

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

G
ra

ph
ic

s
M

em
or

y

host



Superbuffers

• Allows application control over graphics
memory allocation and use

• Render-to-texture, render-to-vertex-array

• Faster, more flexible than pbuffers

• Programming model:
– Allocate formatted graphics memory

– Bind to one or more compatible targets

• Preliminary implementation available



New low-level interface

• Expose Programmability;
jettison fixed function
– ARB_fragment,vertex_program

– Use libraries

• Expose memory capabilities
and routing

• Stripped-down interface

Command
Processor

Vertex
Processor

Rasterizer

Fragment
Processor

Per-Pixel
Operations

G
ra

ph
ic

s
M

em
or

y

host

P

P

P

F

F

P: programmable   F: fixed



Compare with OpenGL

• No Begin/End or immediate mode

• No vertex transform

• No texture environment

• OpenGL is an application layered on this

• Benefit: simplified driver
– Much less state management

– No software path

– Better support, faster addition of new features



Fits with New Applications

• Recent applications exploit high-speed,
parallel computation, large graphics
memory
– Ray-tracing, collision detection, volume

rendering/classification, etc.
– Optimization, matrix computations

• All need programmability, graphics
memory manipulation

• Standard polygon rendering works too



Issues

• ARB_fragment,vertex_program don’t
correspond to machine instructions
– Standard instruction set (like x86) unlikely

soon

– Use C?

• Acceptance
– Trend is towards higher-level, shading

– OpenGL, DirectX carry lots of baggage



What’s Next

• Graphics pipeline stays
vertices ->triangles -> rasterize -> fragments -> pixels

• Higher clock rates
– Memory not increasing as fast

• More parallelism
– Probably SIMD, as today

• Cleanup & extensions
– 32 bit floating-point, etc.

• More computation on GPUs
– When it makes sense


