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Graphics Hardware – High Level
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3D Pipeline Overview

• 350 M Vertices (=Tris)/sec

• 2.6 G Pixels/sec

• Programmable vertex, fragment
processors

• Allows
– Sophisticated shading

– High scene, depth complexity

– Multipass

– Computation on GPUs
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New Features

• Floating-point fragments/pixels
• Usable programmable vertex, fragment

engines
– Limited; not like a CPU

• Other Features
– Early/Hierarchical z
– Occlusion testing
– Antialiasing

• Multisample (vs. downsampling)



New Applications

• Programmability
– Complex lighting
– Motion blur, depth of field
– Other computations

• Floating-point pixels, textures
– High dynamic range rendering
– Volume rendering
– Multipass computation

• Many recent examples



ATI Hardware

• 9700/9800, 9800XT (R300/R350)
• 4 vertex processors
• 8 fragment processors

– Low cost versions with 4

• 256 vertex instructions
– Loops, subroutines may increase this

• 160 fragment instructions
– 32 texture ops, 64 color ops, 64 alpha ops

• Up to 4 render targets



3D pipeline – vertex fetch

Getting vertex data
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3D pipeline – vertex fetch

Getting vertex data
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Vertex Processors

• 4 4-component dot-product
engines
– 350 MHz

– 4 clocks per vertex per engine

• 32-bit floating-point

• Arithmetic instructions:
– madd, 1/x, 1/sqrt(x), etc.

– slt (set on less than)

• Flow control instructions
– call, return, loop, jnz, etc.
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Vertex Processor - Implementation
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Vertex Processing – Final Steps

• Clip against view frustum
– May introduce new vertices

– Also “clip” parameters

– Slow

• Perspective divide
– Divide by w

• Viewport transform
– Scale & offset x, y

• Triangle assembly
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Scan Conversion

Convert triangles to fragments
– R300/350: 2 stage

• Coarse: 8x8  Fine: 2x2

• Cache friendly

• Enables coarse depth-based rejection
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Parameter Interpolation
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• Compute parameter (depth, color,
texture coord) at fragment
– Use plane equation (affine in x,y)

derived from values at vertices

– Perspective correct color, texture
require division by interpolated 1/w
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Fragment Processors
• 8 4-component dot-product engines

– 350 MHz
• 4x Interleaved ALU op/texture fetch

– ALU ops:
• MUL, ADD, EXP, etc.
• DP3, DP4
• 3-component + scalar coissue

– Texture fetch
• TEXLD, TEXLDP (projective), TEXLDBIAS

– Interleaving means texture fetch can be free
• 24-bit floating-point

– 32-bit components from texture or interpolation
– No mipmapping on floating-point textures
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Fragment Processor
Implementation
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Per-Pixel Operations

• Fog: c = ccurrent * (1-f) + cfog * f

• Alpha function:
– kill a fragment based on alpha value

• Depth and Stencil Tests
– Conditionally kill fragment based on

depth or stencil test; conditionally
update depth & stencil

• Color blend
– Blend incoming/existing colors
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Framebuffer

• Floating-point framebuffer
– 32-bit components

– Also fixed point, including 10:10:10:2

• 340 MHz 256-bit DDR-2
– > 20 GB/sec

• Color, texture, depth, stencil caches
– Reduce memory bandwidth

– Benefit from spatial, temporal locality

• Lossless color & depth compression
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F-buffer

• Fragments written in rasterization
order
– x,y coordinates not used

• Useful for multipass transparency
– no double hits

– same geometry generates same
fragments in same order

– bind as texture in subsequent passes
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Non-Features

• Data-dependent conditionals
– Hard in a SIMD environment

• Different processors execute different code

• Texture in vertex processors
– Extra texture fetch, cache, memory requirements

• More vertex or fragment instructions
– More on-chip instruction memory

• Global accumulate
– SIMD again

• Not a CPU!
– performance



Graphics Programming Interfaces



Graphics Programming Interfaces

• Provide software interface to graphics hardware

• Lowest level:
– Expose full functionality of hardware at full performance

– Hide device-specific details

– Limit interface changes generation to generation

• Higher levels:
– Simplify application programming

• E.g. scene graph, shading languages



Interface Levels

• Low level
– Close to hardware

– Like assembly language

• High Level
– Insulates programmer from details

– Shading Languages

– Scene Graph Libraries



• Expose pipeline

   historically fixed-function
• OpenGL

– Requires all functionality; software path if not

• Direct3D
– Uses capability bits

• Both provide vertex, fragment “assembly
language”
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High Level Interface

• Programmable
• Renderman

– Shading-specific; not designed for hardware

• HLSL (DirectX), GLSL (OpenGL), Cg
(nVidia - both)
– General, but all expose vertices vs. fragments
– GLSL virtualizes number of passes

• Ashli (ATI)
– Tool to “compile” Renderman to D3D/OpenGL



High Level Issues

• How much low level to expose?
– 3x1, 4x1, 4x4 vectors/matrices
– Component swizzling

• Who owns the compiler?
– Cg, HLSL, Ashli: compile to abstract machine

language
– GLSL: Compiler in the driver; target language

is hidden
– Issues for portability, performance, debugging



Re-examine hw abstraction

• OpenGL (originally)
– Not programmable
– Graphics memory not

accessible, special purpose

• Changes:
– Programmability
– Flexible use of graphics

memory (multipass, render-
to-texture, render-to-vertex-
array)
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Superbuffers

• Allows application control over graphics
memory allocation and use

• Render-to-texture, render-to-vertex-array

• Faster, more flexible than pbuffers

• Programming model:
– Allocate formatted graphics memory

– Bind to one or more compatible targets

• Preliminary implementation available



New low-level interface

• Expose Programmability;
jettison fixed function
– ARB_fragment,vertex_program

– Use libraries

• Expose memory capabilities
and routing

• Stripped-down interface
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Compare with OpenGL

• No Begin/End or immediate mode

• No vertex transform

• No texture environment

• OpenGL is an application layered on this

• Benefit: simplified driver
– Much less state management

– No software path

– Better support, faster addition of new features



Fits with New Applications

• Recent applications exploit high-speed,
parallel computation, large graphics
memory
– Ray-tracing, collision detection, volume

rendering/classification, etc.
– Optimization, matrix computations

• All need programmability, graphics
memory manipulation

• Standard polygon rendering works too



Issues

• ARB_fragment,vertex_program don’t
correspond to machine instructions
– Standard instruction set (like x86) unlikely

soon

– Use C?

• Acceptance
– Trend is towards higher-level, shading

– OpenGL, DirectX carry lots of baggage



What’s Next

• Graphics pipeline stays
vertices ->triangles -> rasterize -> fragments -> pixels

• Higher clock rates
– Memory not increasing as fast

• More parallelism
– Probably SIMD, as today

• Cleanup & extensions
– 32 bit floating-point, etc.

• More computation on GPUs
– When it makes sense


