Déformations du modèle

Nicolas Holzschuch

Cours d'Option Majeure 2

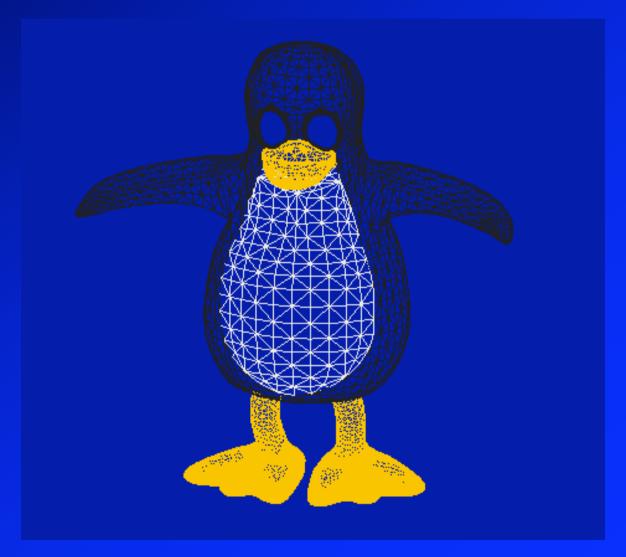
Nicolas.Holzschuch@imag.fr

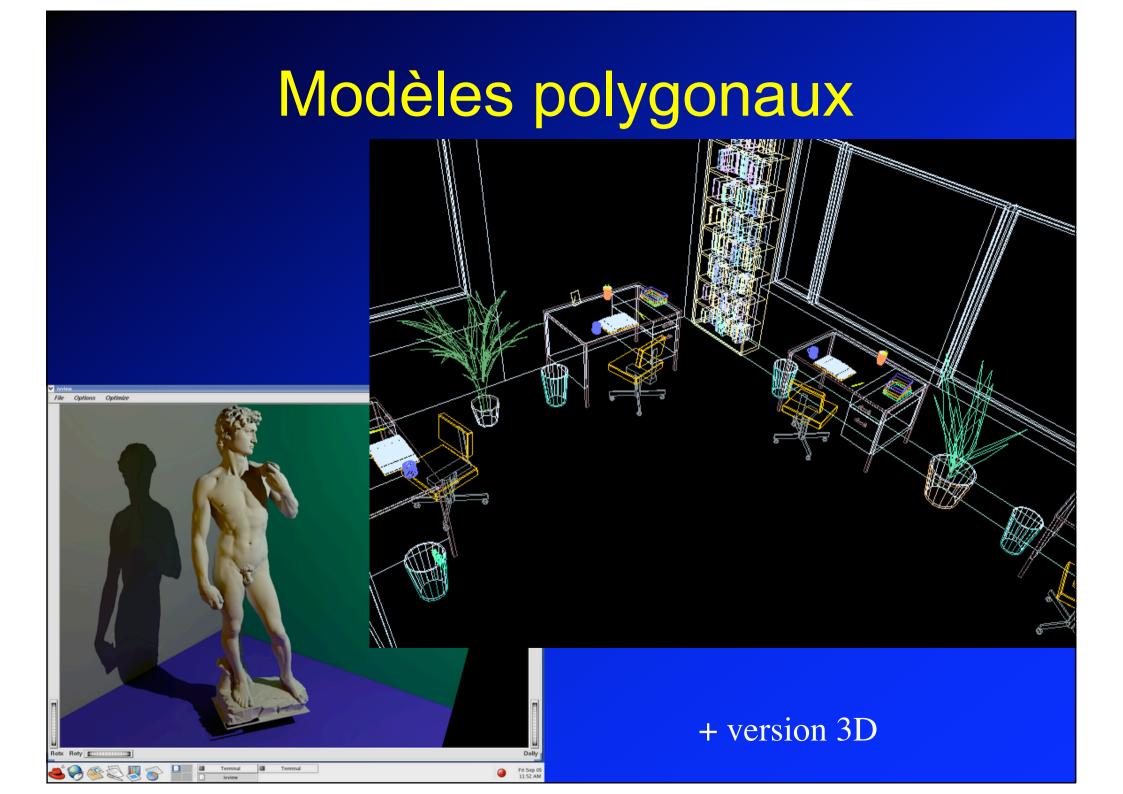
Plan du cours

- Modèles :
 - polygonaux,
 - Bézier, NURBS,
 - surfaces de subdivision...
- Déformations :
 - Function-based deformations
 - Free-Form Deformations
 - Skeletton-based
 - Squelette + FFD

Les modèles

- Basés sur des points
- Polygones:







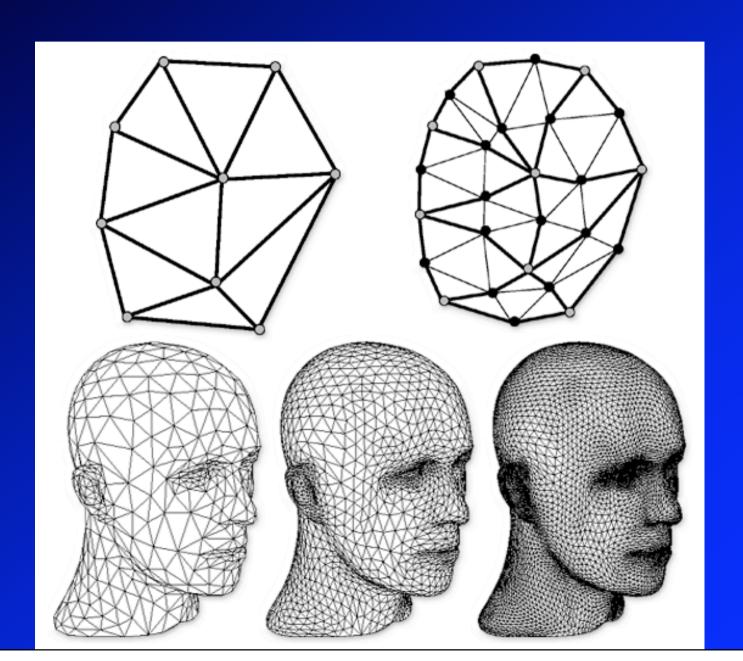
Modèles lisses

- Points de contrôle
- Surfaces paramétriques
 - Bézier
 - B-splines
 - NURBS
- Surfaces de subdivision

Surfaces de subdivision

- Départ : maillage polygonal
- Régle de subdivision
 - − 1 triangle se transforme en *n* triangles
 - Appliquée itérativement
- Surface limite
 - $-C^{1}, C^{2}...$
 - Contrôle local par le maillage de départ
- Complexité contrôlée

Surfaces de subdivision



Déformations

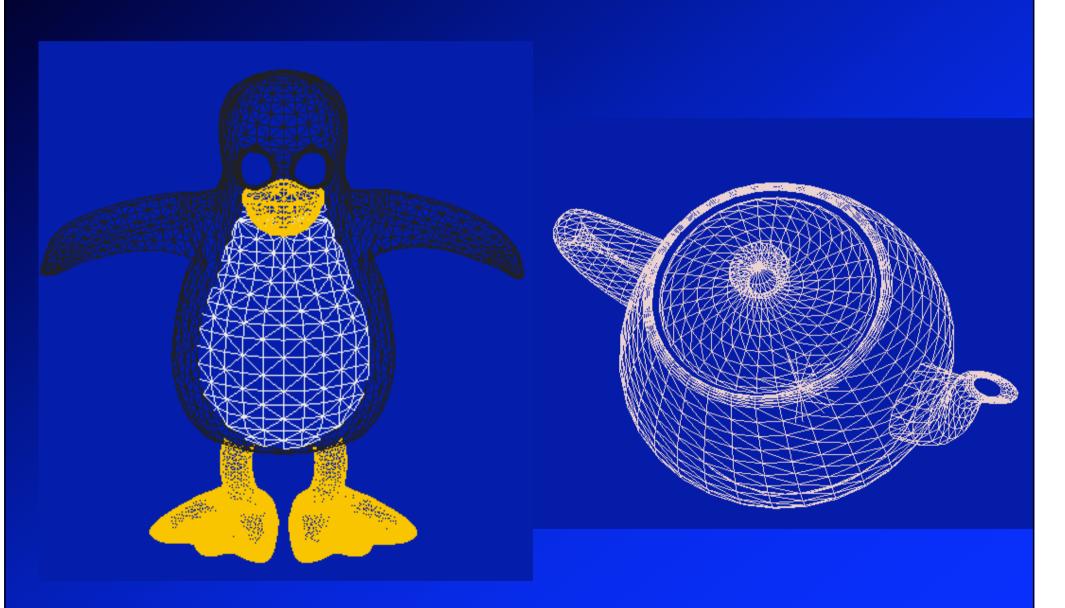
- Modèles tous basés sur points de contrôle
- Pour déformer un modèle, agir sur les points de contrôle
 - Tout le reste n'est que littérature
- Déformations
 - Function-based deformations
 - Free-form deformations
 - Skeleton-deformations

Function-based deformations

- Définir une fonction dans l'espace :
 - $-\mathbf{M}: \mathbf{R}^3 \prod$ matrice de transformation
- Action sur un point P:
 - Évaluer matrice M au point P
 - − Faire agir M sur P:

$$P' = \mathbf{M}(P) P$$

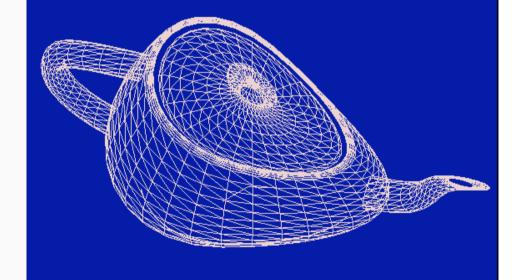
Modèle non-déformé



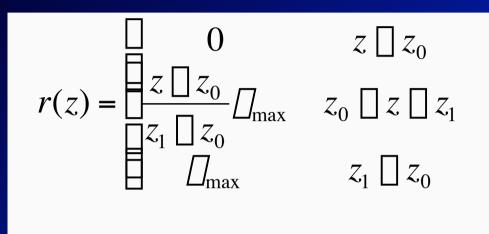
Compression

$$s(x) = \begin{bmatrix} 1 & 1 & x & x_0 \\ 1 & 1/2 & x & x_0 \\ 1/2 & x_1 & x_0 \end{bmatrix} \quad x_0 & x_1 & x_1 \\ x_1 & x_0 & x_1 & x_0 \end{bmatrix}$$

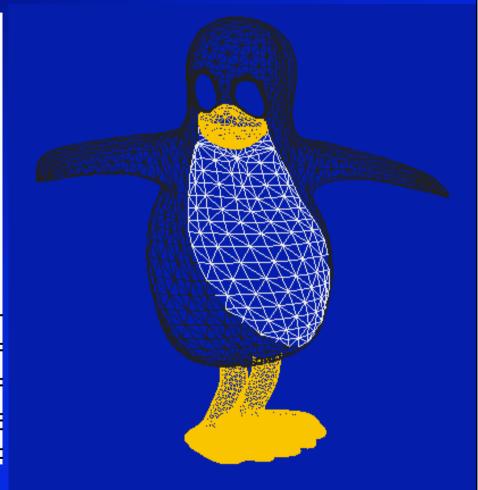
$$P = \begin{bmatrix} 1 & 0 & 0 & x_1 \\ 0 & s(p_x) & 0 & p_y \\ 0 & s(p_x) & p_z \end{bmatrix}$$



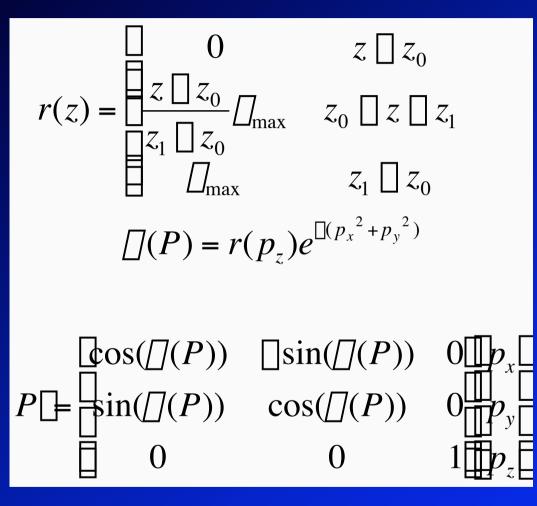
Rotation

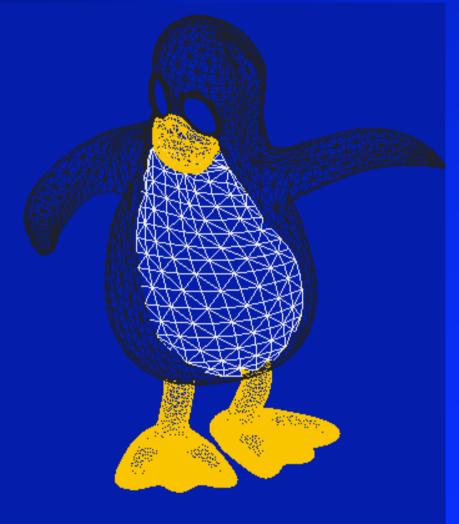


$$P = \begin{cases} \cos(r(p_z)) & \left[\sin(r(p_z)) & 0 \right] p_x \\ \sin(r(p_z)) & \cos(r(p_z)) & 0 \\ 0 & 0 & 1 \end{cases} p_y$$

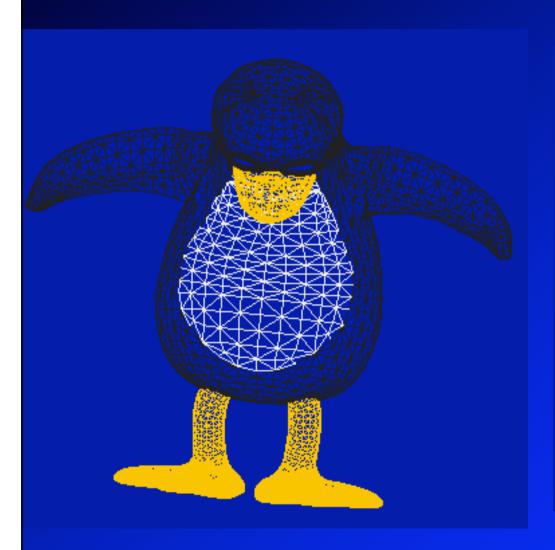


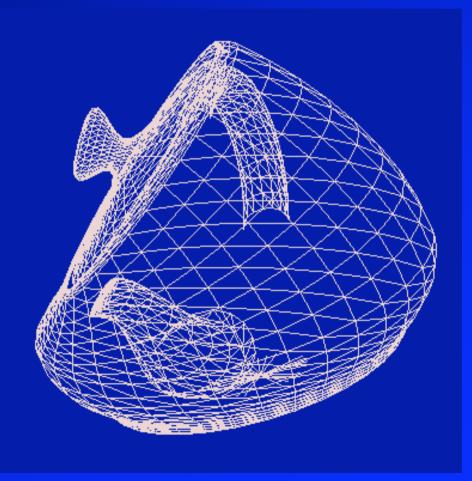
Vortex





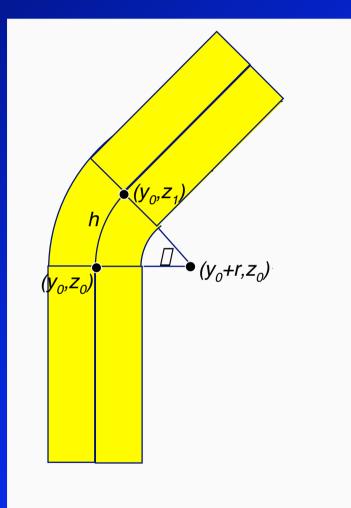
Pliage



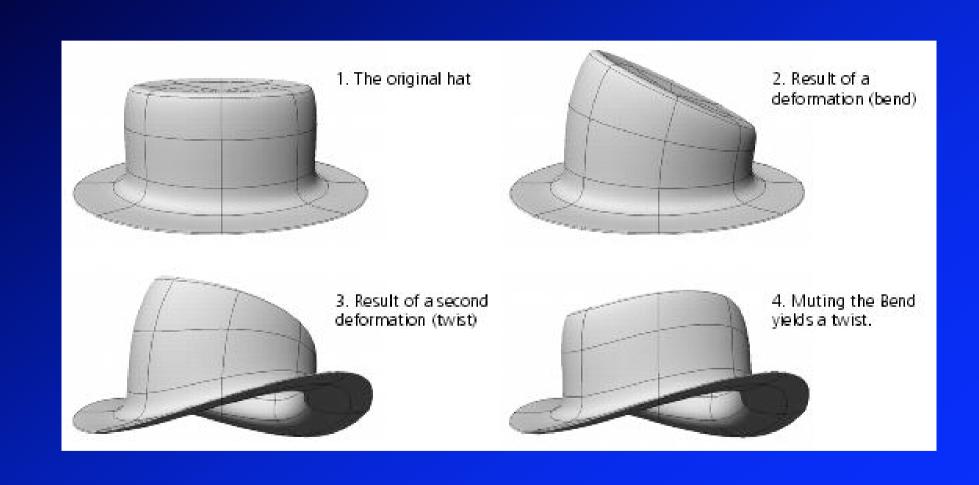


Pliage

- Donné : z_0, z_1 , angle \square
 - Rayon $r = (z_1 z_0)/\square$
- Trois zones:
 - Avant z_0 : rien
 - Au dessus de z_I :
 - Translation de $(z_I z_0)$
 - Rotation angle \square , autour de (y_0+r, z_0)
 - Entre deux:
 - Translation de $(z-z_0)$
 - Rotation angle $\prod (z-z_0)/(z_1-z_0)$, autour de (y_0+r, z_0)



Combinaisons

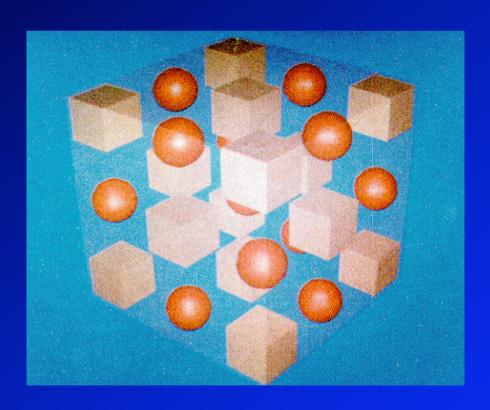


Function-based deformations

- Avantages :
 - Pratique
 - Simple
- Inconvénients:
 - Contrôle fin des déformations
 - Le modèle se recoupe
 - Augmenter le modèle
 - Limiter les déformations

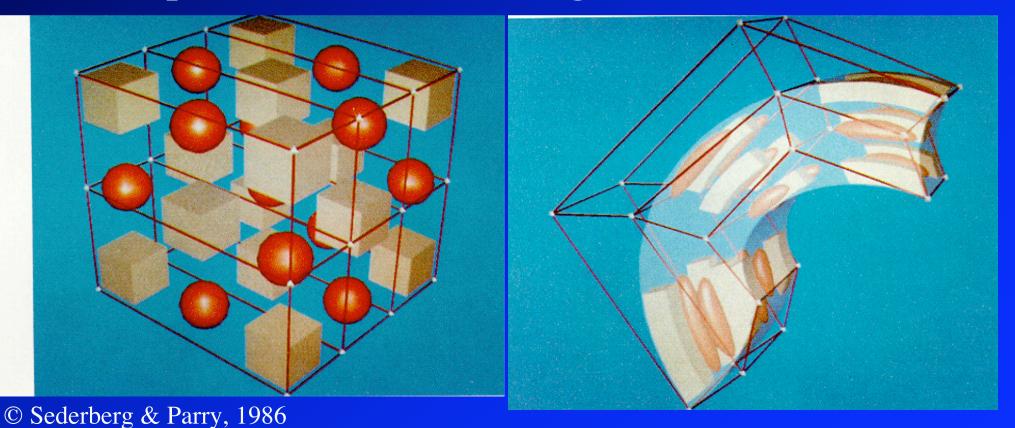
Free-form deformations

- Déformer l'espace autour du modèle
 - Modèle inclus dans un « bloc de plastique »



Comment?

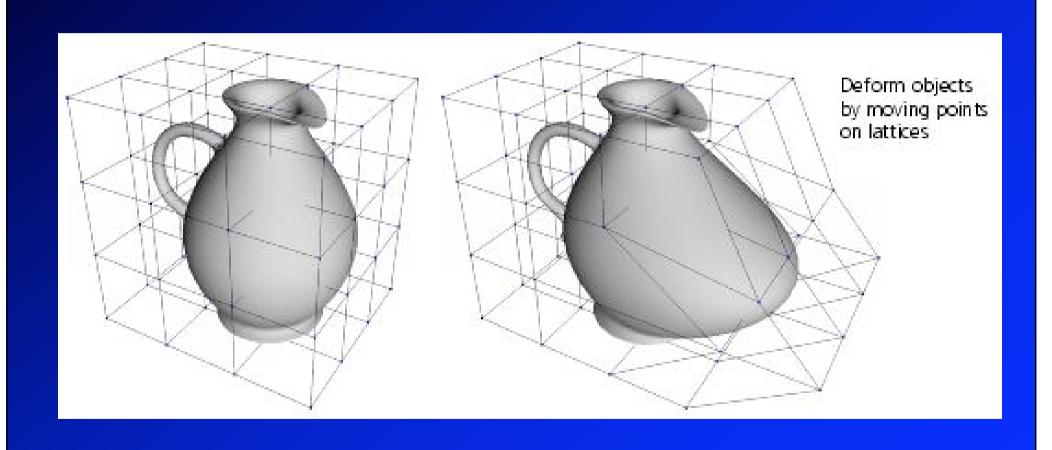
- Maillage de points de contrôle dans l'espace
- Déformer le maillage
- L'espace « suit » le maillage



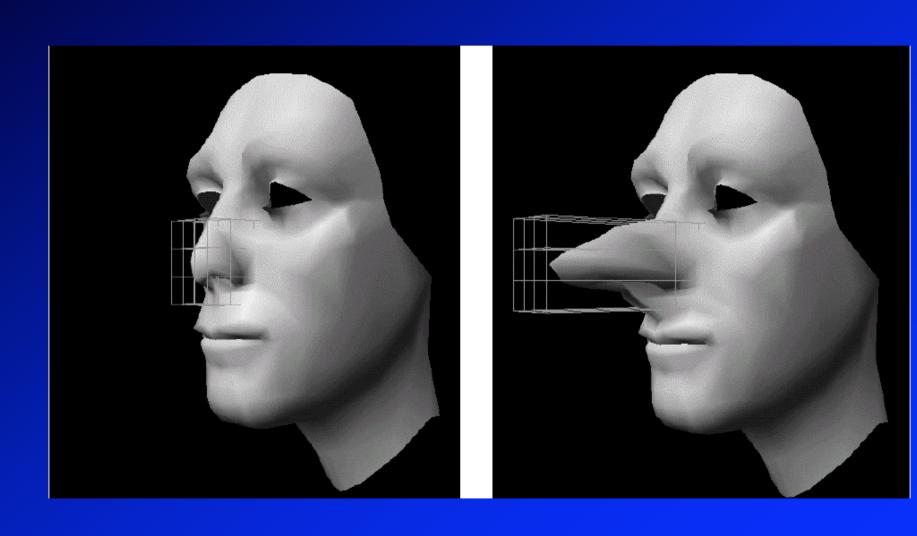
Comment (suite)

- Parallélépipède de l'espace (S,T,U)
- Paramétrisation locale
 - Conversion (x,y,z) \square (s,t,u)
- Points de contrôle P_{ijk}
- Déplacement des points de contrôle
- Nouvelle position (x', y', z') en fonction de (s, t, u)

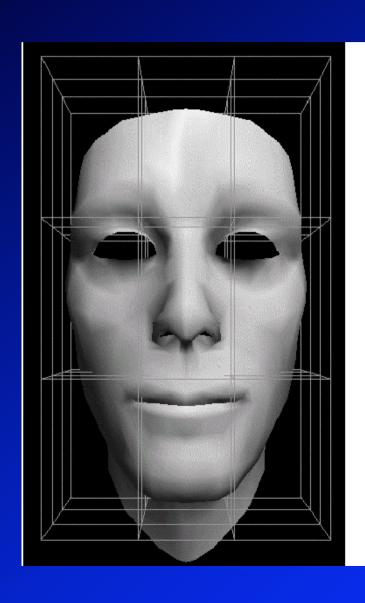
FFD example

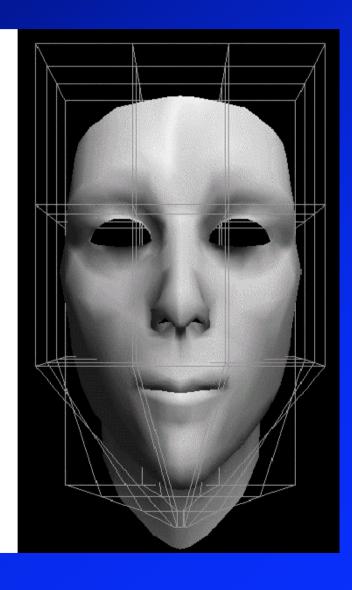


FFD example



FFD example





Paramétrisation locale

- Parallélépipède (pas cubique)
 - Base non orthonormée

$$-M = M_0 + s\mathbf{S} + t\mathbf{T} + u\mathbf{U}$$

$$S = \frac{\mathbf{T} \square \mathbf{U} \cdot (M \square M_0)}{\mathbf{T} \square \mathbf{U} \cdot \mathbf{S}}$$

$$t = \frac{\mathbf{S} \square \mathbf{U} \cdot (M \square M_0)}{\mathbf{S} \square \mathbf{U} \cdot \mathbf{T}}$$

$$u = \frac{\mathbf{S} \square \mathbf{T} \cdot (M \square M_0)}{\mathbf{S} \square \mathbf{T} \cdot \mathbf{U}}$$

Points de contrôle

- Positionnement quelconque
 - Par ex. régulier dans chaque dimension

$$P_{ijk} = M_0 + \frac{i}{i_{\text{max}}} \mathbf{S} + \frac{j}{j_{\text{max}}} \mathbf{T} + \frac{k}{k_{\text{max}}} \mathbf{U}$$

- Le plus simple
- Déplacement des points de contrôle
 - Interface utilisateur

Nouvelle position

• Interpolation des points de contrôle

$$M_{FFD} = \prod_{i=0}^{i_{\max}} \prod_{j=0}^{j_{\max}} B_i^{i_{\max}}(s) B_j^{j_{\max}}(t) B_k^{k_{\max}}(u) P_{ijk}$$

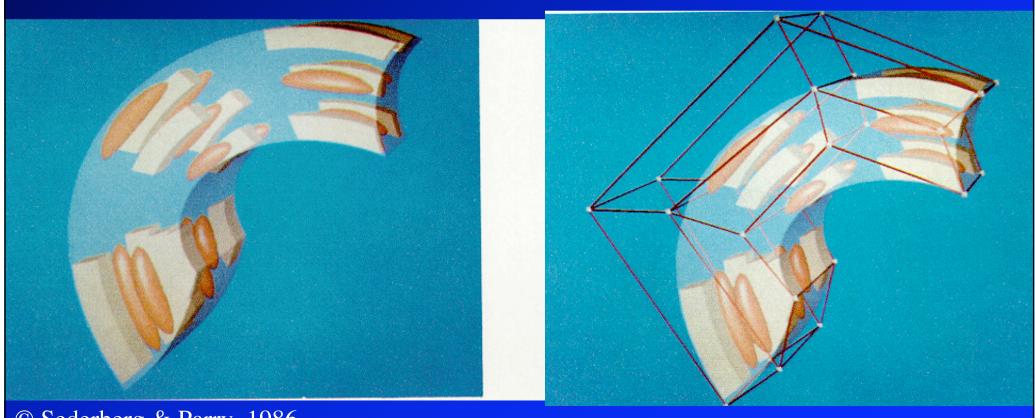
• B(s) polynôme de Bernstein :

$$B_i^{i_{\text{max}}}(s) = C_{i_{\text{max}}}^i s^i (1 \square s)^{i_{\text{max}} \square i}$$

Interpolation

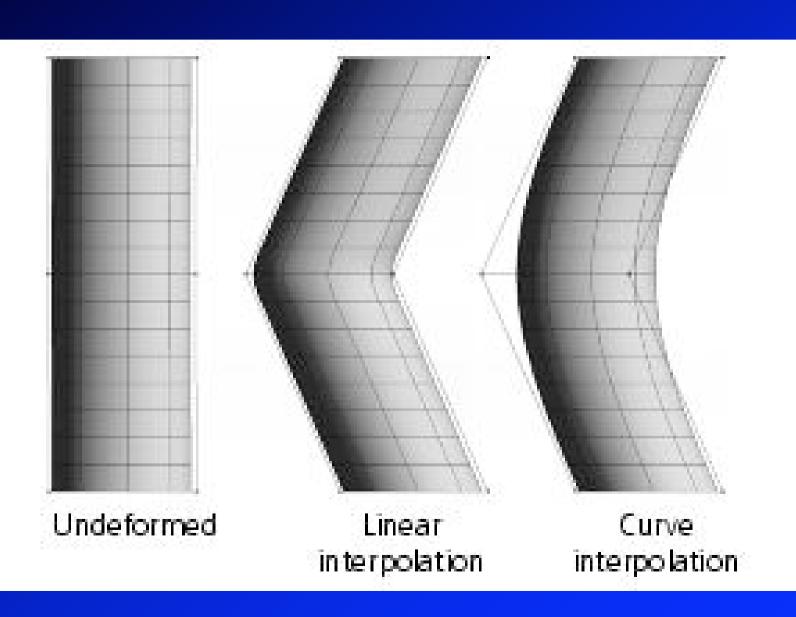
- Polynôme de Bernstein :
 - Interpolants de Bézier
 - Ordre 1, 2, 3....
 - Combinaison interpolants ordre 3
- Également possible avec autres interpolants
 - B-Splines,...
- Modèle générique
- Sujet TD 3

Surfaces de Bézier



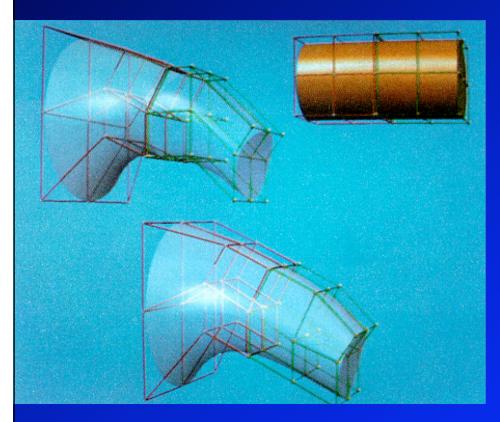
© Sederberg & Parry, 1986

Diverses interpolations



Continuité

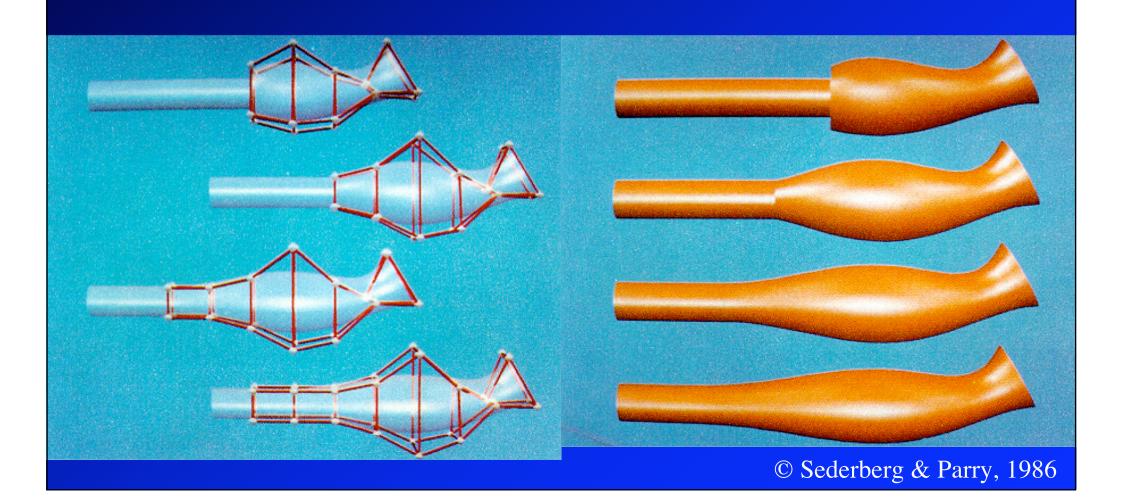
- Modèle continu (?)
- Déformation continue, résultat continu
 - Conditions habituelles pour surfaces de Bézier



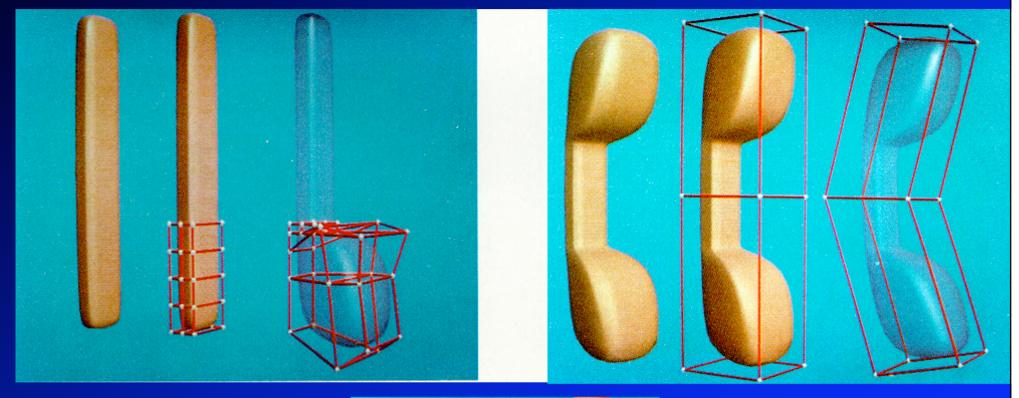
© Sederberg & Parry, 1986

Continuité (suite)

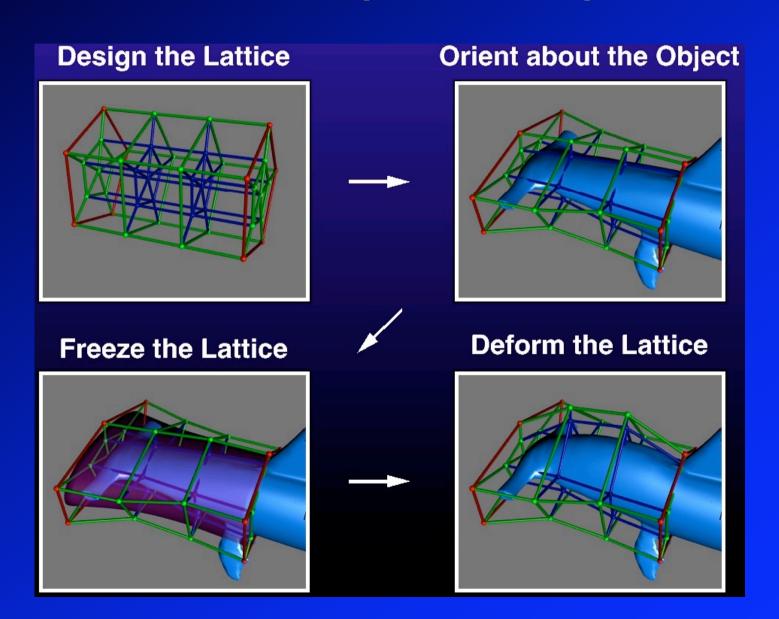
• C^{-1} , C^0 , C^1 , C^2 ...



Local/global



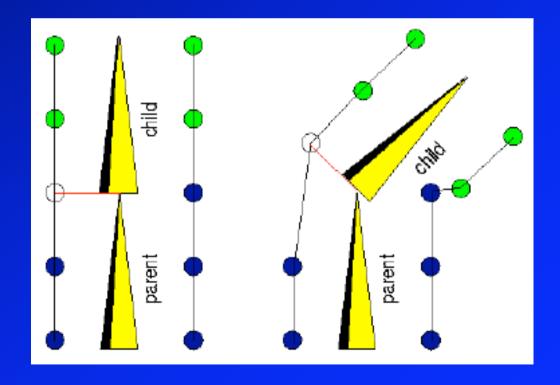
Modèle quelconque



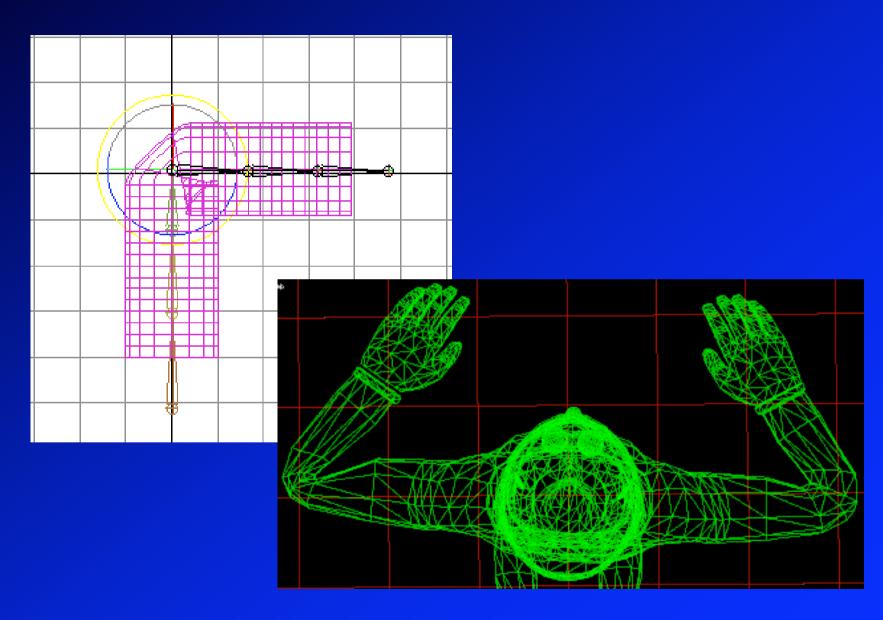
Squelette

Squelette

- Point du modèle associé à un os
- Déplacer l'os : le modèle suit, transforme les points

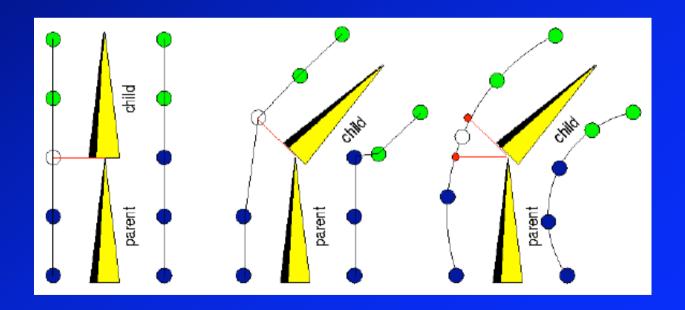


Problèmes



Poids

- Points modifiés par plusieurs os
- Moyenne pondérée des déplacements
- Ajuster les poids

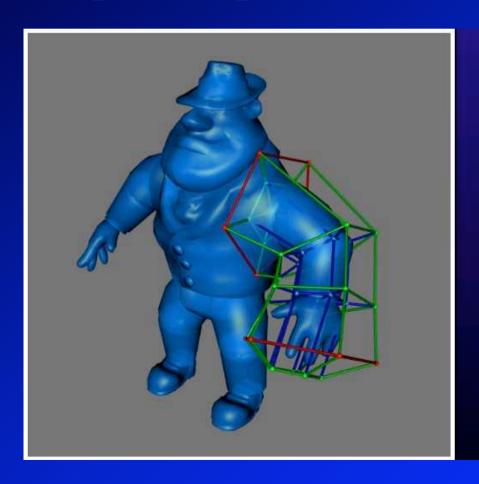


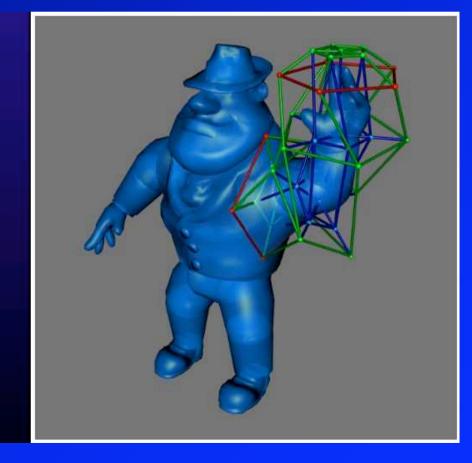
Squelette

- Problèmes :
 - Construire le squelette pour un maillage existant
 - Choisir les os/points
- Maillage complexe
 - Travail difficile

Squelette + FFD

- Placer squelette simplifié sur modèle
- Squelette porte FFD





Squelette + FFD

- Le meilleur des deux mondes
- Modifications quelconques sur modèle
- Squelette facile à placer, à déplacer

Plan du cours

- Modèles :
 - polygonaux,
 - Bézier, NURBS,
 - surfaces de subdivision...
- Déformations :
 - Function-based deformations
 - Free-Form Deformations
 - Skeletton-based
 - Squelette + FFD